• Title/Summary/Keyword: Valve-opening pressure

Search Result 191, Processing Time 0.023 seconds

Effect of a Butterfly Valve on the Uncertainty of Flow Rate Measurement (버터플라이 밸브의 유량측정 불확도에 대한 영향)

  • Yoon, Seok-Ho;Lee, Jung-Ho;Yu, Cheong-Hwan;Park, Sang-Jin;Chung, Chang-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.4
    • /
    • pp.18-24
    • /
    • 2010
  • For testing large-capacity pumps, the accurate flow rate measurement is needed in the test loop. As a measuring method of flow rate, venturi tube is recommended due to its low pressure loss. However, upstream disturbance of loop component such as a valve has an effect upon the accuracy of flow rate measurement. For controlling flow rate in case of high flow rate and large-scale piping system, a butterfly-type valve is generally used due to its compactness. However, a butterfly valve disturbs downstream flow by generating turbulence, cavities, or abrupt pressure change. In this study, the effect of downstream disturbance of butterfly valve on the flow rate measurement using a venturi tube is investigated. Test loop consists of circulation pump, reservoir, butterfly valve, venturi tube, and reference flow meter. The test is conducted with regard to a different valve opening angle of butterfly valve. According to the valve opening angle, the uncertainty of flow rate measurement is investigated.

Study on Characteristics of Nipple Fracture for Fluid Path Control of 3-Way Ultra-High Pressure Valve (3-way 초고압 밸브의 유로제어를 위한 니플 파단 특성에 관한 연구)

  • Kang, Dae-Hee;Ranjit, Shrestha;Chung, Yoon-Jae;Kim, Won-Tae
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.865-871
    • /
    • 2018
  • The 3-way valve have been used as a valve for opening and closing the valve by the flow control in the pressure system of the cryogenic and high pressure environment. In this paper, numerical analysis and experimental study on fracture nipple of 3-way ultra high pressure valve applied to space launch vehicle was carried out. We have developed a 3-way valve numerical simulation modeler of cryogenic environment using commercial software ANSYS 18.2. As results of numerical analysis, optimum nipple condition was derived. In addition, a 3-way valve prototype was fabricated and the fracture test was performed and compared with the numerical analysis results.

Cerebrospinal Fluid Lumbar Tapping Utilization for Suspected Ventriculoperitoneal Shunt Under-Drainage Malfunctions

  • Lee, Jong-Beom;Ahn, Ho-Young;Lee, Hong-Jae;Yang, Ji-Ho;Yi, Jin-Seok;Lee, Il-Woo
    • Journal of Korean Neurosurgical Society
    • /
    • v.60 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Objective : The diagnosis of shunt malfunction can be challenging since neuroimaging results are not always correlated with clinical outcomes. The purpose of this study was to evaluate the efficacy of a simple, minimally invasive cerebrospinal fluid (CSF) lumbar tapping test that predicts shunt under-drainage in hydrocephalus patients. Methods : We retrospectively reviewed the clinical and radiological features of 48 patients who underwent routine CSF lumbar tapping after ventriculoperitoneal shunt (VPS) operation using a programmable shunting device. We compared shunt valve opening pressure and CSF lumbar tapping pressure to check under-drainage. Results : The mean pressure difference between valve opening pressure and CSF lumbar tapping pressure of all patients were $2.21{\pm}24.57mmH_2O$. The frequency of CSF lumbar tapping was $2.06{\pm}1.26times$. Eighty five times lumbar tapping of 41 patients showed that their VPS function was normal which was consistent with clinical improvement and decreased ventricle size on computed tomography scan. The mean pressure difference in these patients was $-3.69{\pm}19.20mmH_2O$. The mean frequency of CSF lumbar tapping was $2.07{\pm}1.25times$. Fourteen cases of 10 patients revealed suspected VPS malfunction which were consistent with radiological results and clinical symptoms, defined as changes in ventricle size and no clinical improvement. The mean pressure difference was $38.07{\pm}23.58mmH_2O$. The mean frequency of CSF lumbar tapping was $1.44{\pm}1.01times$. Pressure difference greater than $35mmH_2O$ was shown in 2.35% of the normal VPS function group (2 of 85) whereas it was shown in 64.29% of the suspected VPS malfunction group (9 of 14). The difference was statistically significant (p=0.000001). Among 10 patients with under-drainage, 5 patients underwent shunt revision. The causes of the shunt malfunction included 3 cases of proximal occlusion and 2 cases of distal obstruction and valve malfunction. Conclusion : Under-drainage of CSF should be suspected if CSF lumbar tapping pressure is $35mmH_2O$ higher than the valve opening pressure and shunt malfunction evaluation or adjustment of the valve opening pressure should be made.

Study on Flow Characteristics for Eccentric Shaft in the Butterfly Valve System (축편심 버터플라이 밸브의 유동특성에 관한 연구)

  • Park, S.M.;Choi, H.K.;Yoo, G.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.587-591
    • /
    • 2011
  • To improve the performance of the control butterfly valve seals are used to eccentric shaft. In this case, vertical opening gas of the butterfly valve is non-symmetrical, which will change the flow pattern around the valve. In this study, the eccentric drive shaft of the butterfly valve to change flow characteristics are performed numerically. Flow pattern and pressure drop are investigated as the valve opening angle increases for a given mass flow rate. The valve flow coefficient is compared to the without eccentric shaft.

  • PDF

Experimental Study on Performance of a Propulsive Nozzle with a Blower Piping System

  • Sakamoto, Masahiko
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.4
    • /
    • pp.213-221
    • /
    • 2013
  • The characteristics of the thrust for ship propulsion equipment directly driven by air compressed by pressure fluctuation in a blower piping system are investigated. The exhaust valve is positioned upon the air ejection hole in the discharge pipe in order to induce the large-scale pressure fluctuation, and the effects of the valve on the pressure in the pipes and the thrust for the propulsive nozzle are examined. The pressure in the pipes decreases immediately after the valve is opened, and it increases just before the valve is closed. The thrust for the propulsive nozzle monotonically increases with increasing number of revolutions and depth. The interfacial wave in the nozzle appears in the frequency of approximately 4Hz, and it is important for the increase of the thrust to synchronize the opening-closing cycle for the exhaust valve with the generation frequency of the interfacial wave. The finite difference lattice Boltzmann method is helpful to investigate the characteristics of the flow in the nozzle.

Dynamic Modeling and Test of the Air-Operated Valve (공기구동밸브의 동특성 모델링 및 시험)

  • Cho T.D.;Lee H.Y.;Yang S.M.;Yang S.B.;Kwon B.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1808-1811
    • /
    • 2005
  • The prediction of AOV(air-operated valve) performance is normally evaluated by the allowable opening thrust margin for the opening and closing stroke. However, it is not easy to carry out the dynamic test measurement for all the valves in the nuclear power plant due to the safety and operating conditions. The analysis of the available and required thrust for the valve is simulated as an alternate method to turn around this obstacle. The required air pressures to the stem displacement are discussed for differential valve pressure obtained by experiment. The result of the simulation is compared with that of the experiment. SIMULINK in MATLAB was used for the simulation and the results show good agreement with the actual test carried out with Fisher globe valve.

  • PDF

The Effect of Air Chamber Placed in Water Supply Piping System (급수배관계에서 에어 챔버의 설치효과에 관한 연구)

  • 이용화;최국광
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1047-1055
    • /
    • 2002
  • The present study is to investigate the pressure wave characteristics and the absorption of the maximum and minimum pressure generated by instantaneous valve closure and opening at the end of the straightening copper Piping system with and without an air chamber. Also, life of air chamber is investigated. Experiments were conducted under the following conditions: initial pressure of 1~5 bar, flow velocity of 0.5~3.0 m/s, water temperature of$20^{\circ}C$ and air chamber volume of 45.1~449.5$cm^3$ The results of the study can be used in sizing air chamber and selecting the water hammer absorbtion apparatus.

A Micro Shunt Valve with Anti-siphon Effect

  • Lee, Sang-Wook;Yoon, Hyeun-Joong;Yang, Sang-Sik
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.1
    • /
    • pp.31-34
    • /
    • 2004
  • This paper presents the fabrication and testing of a two-way pressure regulation micro shunt valve with an anti-siphon effect that can be implanted in hydrocephalus patients. This micro shunt valve consists of a silicone rubber membrane and a valve seat for the opening pressure control as well as the anti-siphon behavior. The two-way pressure regulation and the anti-siphon effect of the micro shunt valve are verified experimentally for various sizes of membranes and valve seats.

Study on Static Characteristics of Hybrid Spool Valve (하이브리드 스폴밸브의 정특성 연구)

  • Yun, So-Nam;Ham, Young-Bok;Kim, Dong-Su
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.121-126
    • /
    • 2001
  • In this study, the 4-way spool valve characteristics are clearly defined and proposed new type of spool valve. This paper presents governing equations of the flow through clearances between sleeve and spool as a model of orifice flow for null characteristic analysis, and programmed analysis software of it. This software is possible to basically analysis that not only which case of open center, closed center or critical center but +,- displacement of spool, lab position, boundary region and spool opening of the valve, and to estimate the pressure variation in the spool and external leak flow variation. We are convinced that the scale of load pressure difference is changed as lab condition of spool valve, and this scale is changed with boundary point on the annular clearance. It is vary useful to designer and user of spool valve with this design data and analysis software.

  • PDF

Characteristics of Flow Induced Noise from a Ball Valve Used for a Gas Pipeline Using an Acoustic Camera (음향 카메라를 이용한 가스 파이프라인 볼밸브 유동소음 특성)

  • KIM, CHUL-KYU;LEE, SANG-MOON;JANG, CHOON-MAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.106-112
    • /
    • 2017
  • The present study describes flow induced noise generated from a ball valve used for a gas pipeline. Noise generation from a ball valve mainly induces by interference between unstable(or fluctuating) leakage flow and pipe wall when the ball valve is working closed or opened. To measure the positions of the noise source and the amplitude of noise with respect to measuring frequencies, a commercial acoustic camera is introduced. Noise characteristics generated by the ball valve have been performed by four valve opening rates: 30, 50, 70 and 100 percents. It is noted that 100 percent opening rate means that the valve is fully opened. Throughout the experimental measurements using the acoustic camera, the location of the noise source and the noise amplitude with respect to the frequencies for the test ball valve are clearly evaluated. It is found that the dominant frequencies come from the fluctuating flow at the downstream of the ball valve for four opening rates are observed between 3,000Hz and 3,200Hz. Maximum noise amplitude comes from the ball valve reaches 75dB at the valve opening rate of 50 percent.