• Title/Summary/Keyword: Valve-opening pressure

Search Result 191, Processing Time 0.024 seconds

Analysis of Flow through High Pressure Bypass Valve in Power Plant (발전소용 고압 바이패스 밸브 내부 유동해석)

  • Cho, An-Tae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.6
    • /
    • pp.17-23
    • /
    • 2007
  • In the present work, flow analysis has been performed in the steam turbine bypass control valve (single-path type) for two different cases i.e., case with steam only and case with both steam and water. The numerical analysis is performed by solving three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations. The shear stress transport (SST) model and $k-{\varepsilon}$ model are used to each different case as turbulence closure. Symmetry condition is applied at the mid plane of the valve while adiabatic condition is used at the outer wall of the cage. Grid independency test is performed to find the optimal number of grid points. The pressure and temperature distributions on the outer wall of the cage are analyzed. The mass flow rate at maximum plug opening condition is compared with the designed mass flow rate. The numerical analysis of multiphase mixing flow(liquid and vapor) is also performed to inspect liquid-vapor volume fraction of bypass valve. The result of volume fraction is useful to estimate both the safety and confidence of valve design.

A Study on the Chattering under Cryogenic Flow Test of a Oxidizer Shutoff Valve (산화제 개폐밸브의 극저온 유동시험에서 채터링의 고찰)

  • Lee, JoongYoup;Han, SangYeop;Lee, SooYong
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.108-117
    • /
    • 2013
  • The oxidizer shutoff valve of a gas generator controls the mass flow rate of the propellant of a rocket engine using pilot pressure and spring the force of the valve. The developing oxidizer shutoff valve can be shut off if the pilot pressure is removed from the actuator. Therefore, force balancing is necessary to analyze the characteristics of the forces with respect to the opening and closing of the valve in order to evaluate its performance. In light of this, the valve has been designed to adjust the control pressure required to open the poppet and to determine the working fluid pressure at which the valve starts to close. Under cryogenic flow test as a tests level of C.R.T(Control Random Test), the chattering phenomena occurred due to much leakage of a metal seat section. The pressure for chattering of the oxidizer valve is predicted at about 11 bar using force balancing analysis.

A Study on the Numerical Analysis of Internal Flow in a Cone Type Valve (Cone Type 밸브 내부유동 수치해석에 관한 연구)

  • Chin, Do-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_2
    • /
    • pp.199-207
    • /
    • 2020
  • These days, many different types of valves are developed in the industrial area according to their use purpose. Multiple kinds of valves are installed to control a flow and pressure of the pipe conveying fluid. Valves serve as critical roles in land plants such as power plants. The performance of equipment varies depending on valve characteristics. In this study, the internal flow analysis on Cone-type valve is conducted to analyze flow field and secure a value of the flow coefficient Cv. According to the internal flow analysis, when the flow distribution of the middle cross-section of valve was open 100%, flow field was relatively and smoothly taken out. If it was open 50%, flow recirculation region increased and a little complex flow field occurred. Unlike ball valve or butterfly valve, this valve had flow recirculation in its outlet depending on a valve opening amount. Therefore, it was found that there was no flow recirculation in the outlet of Cone-type valve.

Analysis of Swirl Flow and Combustion Characteristics by Variable Valve's Operation of Cam-In-Cam System based on GT-Power Program (GT-Power기반 Cam-In-Cam 가변밸브작동에 따른 스월유동 및 연소특성 해석)

  • Lee, Y.M.;Jo, I.S.;Kim, J.H.;Park, S.W.;Lee, J.W.
    • Journal of ILASS-Korea
    • /
    • v.23 no.2
    • /
    • pp.58-65
    • /
    • 2018
  • An analytic strategy to control the variable valve actuation applied to two intake valves (flow port intake valve and swirl port intake valve) was performed in this study. we considered the variation in phasing of intake valve profiles by using the Cam-in-Cam technology. The analytic model was implemented in the GT-Power simulation program and analyzed the result of regulated emissions such as, NOx and Soot, especially with IMEP characteristics. Namely, we meticulously investigated the sources of having effect on the amount of NOx and soot formation under the test conditions with retard timing of both flow port and swirl port intake valves for decreasing the opening duration by 35CAD. Also, we analyzed the effect of incylinder pressure and temperature with NOx variations and in-cylinder pressure and temperature on NOx variations and normalized turbulent intensity. Through this analysis, some useful results on the combustion and flow characteristics of the swirl port and flow port control of the intake valve were obtained by this study.

Determination of Eccentric Axis for Pump Control Valve Using the Characteristic Function (특성함수를 이용한 펌프 제어 밸브의 편심축 결정)

  • Shin, Myung-Seob;Yi, Sang-Il;Park, Gyung-Jin;Yoon, Joon-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.3
    • /
    • pp.43-49
    • /
    • 2008
  • The pump control valve is a butterfly valve that has an eccentric rotating axis. It is not only used as a butterfly valve to control the flow rate or pressure, but also as a check valve to prevent backward flow. A new design method of eccentric rotating axis is proposed to design the valve. The height of the rotating axis is determined through flow field analysis. A general purpose of computational fluid dynamics software system, Fluent is used to simulate the fluid flow. Flow field analysis is performed for various heights of the rotating axis and different opening angles of the valve. A characteristic function is defined for estimating the flow characteristics based on the results of flow field analysis. The characteristic function is defined in order to determine the height of the rotating axis. An optimization problem with a characteristic function is formulated to determine the amount of eccentricity. The height of the Totaling axis of the valve is determined through solving the optimization problem.

A Numerical Analysis on the Motion of Mechanical Heart Valve(MHV) and Characteristics of Blood Flow in an Elastic Blood Vessel (탄성혈관 내 기계식 인공심장판막(MHV)의 거동 및 혈액 유동 특성에 관한 수치해석적 연구)

  • Bang Jin-Seok;Choi Choeng-Ryul;Kim Chang-Nyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.3 s.168
    • /
    • pp.154-161
    • /
    • 2005
  • In this study, the leaflet motion of a mechanical heart valve and the characteristics of two-dimensional transient blood flow in an elastic blood vessel have been numerically investigated by using fluid-structure interaction method. Here, blood has been assumed as a Newtonian, incompressible fluid. Pressure profiles have been used as boundary conditions at the ventricle and the aorta. As a result, closing motion of the leaflet is faster than opening one. While opening angles of leaflet grow up, vortex is detected at the sinus and backward of the leaflets. When the leaflet is fully closed, vortex is detected at the ventricle and at that moment maximum displacement of the elastic blood vessel is observed in the vicinity of the sinus region. Maximum displacement is caused in association with the blood flow that is oriented toward the elastic blood vessel.

Study of the Fluid Flow on Proportional Valve in Spool Displacement using CFD

  • Li, Kui-Ming;Choi, Yoon-Hwan;Lee, Ill-Yeong;Lee, Yeon-Won
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.22-26
    • /
    • 2015
  • The main objective of this work is to estimate the fluid flow of a proportional valve. The study is based on the classical compressible flow theory and the computations with the help of CFD based commercial software - ANSYS CFX. The fluid flow with the movement of spool along the sleeve is simulated. To change the spool moving from 0.4mm to 2.0mm, the moving mesh method with different condition of orifice is considered here. The results show that it is the highest at the 80 % (1.6mm) opening and at the 20 % (0.4mm) opening, is the lowest.

SimulationX®-based Modeling for Valve-Plate Notch Design of Variable Swash-Plate Axial Piston Pump (SimulationX®를 이용한 가변 사판식 액셜 피스톤 펌프의 밸브플레이트 노치 최적화에 관한 연구)

  • Lee, San Seong;Chung, Won Jee;Lim, Dong Jae;Cha, Tae Hyung;Kim, Soo Tae;Lee, Jeong Sil;Choi, Kyung Shin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.104-112
    • /
    • 2018
  • Considering the shape of a valve plate in design is important for reducing the pulsation phenomenon, which is a negative factor in pump performance. The purpose of this study is to propose an optimized method for a valve-plate V-type notch of a piston pump by modeling and simulation. The method uses $SimulationX^{(R)}$, a commercial hydraulic analysis program, and to provide data for the designing of the notch. The opening areas are determined by performing kinematic analysis of the notch part where the opening area changes rapidly. After applying the result analysis, the main effects on maximum pressure pulsation and maximum backflow according to the notch design factors are analyzed by using the full factorial method of experimental design. The optimized solutions are derived for the notch design variables, based on the analyzed data.

A study on the scavenging characteristics in slow-speed two-stroke diesel engines (저속 2행정 디젤 기관의 소기 특성에 관한 연구)

  • 고대권;최재성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.24-32
    • /
    • 1995
  • The scavenging characteristics have a great influence on the performance of a diesel engine, especially slow-speed two-stroke diesel engines which are usually used as a marine propulsion power plant, and they are greatly affected by the conditions in the cylinder, intake and exhaust manifolds, and the opening and closing timing of scavenging ports or exhaust valves during the gas exchange process. Besides, there are many other factors to affect the scavenging characteristics and these factors interact each other very complicatedly. Therefore the simulation program of the gas exchange process is very useful to improve and predict the scavenging characteristics, due to the high costs associated with redesign and testing. In this paper it was attenpted to investigate the effect of the variation of the pressure ratio of intake to exhaust manifolds, and the variation of the opening and closing timing of a exhaust valve by using a computational program for a three-zone scavenging model which was developed by authors. The computed results showed that the scavenging efficiency and delivery ratio increased considerably, but the trapping efficiency decreased with increasing of the pressure ratio of intake to exhaust manifolds. The scavenging efficiency, trapping efficiency, and th conditions of the cylinder gases were affected by the opening timing of the exhaust valve, but the delivery ratio by the closing timing.

  • PDF

Analysis of Flow and Performance of Regulator for Clean Gas Supply System (가스 조절용 레귤레이터의 유동 및 성능해석)

  • Kim, M.K.;Lee, Y.S.;Choi, W.J.;Kwon, O.B.;Park, J.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • In this study, flow characteristics at the regulators, which is very important for clean gas supply systems for semiconductors and LCD industries, are investigated. Numerical simulations are carried out to visualize flows at regulators for several flow rates and to investigate pressure losses at some parts in the regulator. Velocity field at the regulator along with the detailed velocity field near the spring and near the valve is shown. New regulator models are proposed in this paper, and numerical simulations are also carried out to visualize flows at regulator for several flow rates, and to investigate pressure losses at the parts in new models. Pressure drops a lot across the valve seat. Pressure drop increases as mass flow rate increases. Especially for small opening, pressure drop increases rapidly as mass flow rate becomes large.

  • PDF