• Title/Summary/Keyword: Valve station

Search Result 55, Processing Time 0.019 seconds

Turbo Expander Power Generation Using Pressure Drop at Valve Station in Natural Gas Transportation Pipeline (천연가스 정압기지의 압력강하를 이용한 터보팽창기 전력생산)

  • Ha, Jong-Man;Hong, Seong-Ho;You, Hyun-Seok;Kim, Kyung-Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.3
    • /
    • pp.1-7
    • /
    • 2012
  • Natural gas through pipeline is supplied to consumers after its pressure gets down compulsorily. The waste pressure energy of this process can be restored by use of turbo expander which can produce electricity. So, turbo expander conducts two functions - pressure reduction and power generation. The power amount is the enthalpy difference between the inlet and outlet states. The five main factors which affect economic profit are facility price, produced power amount, pre-heating amount, electricity cost, and fuel gas cost. Power generation depends mainly on flow amount because inlet and outlet states are fixed. A methodology to estimate economy in irregular flow pattern is proposed and using this way, a case study was carried out.

Study on improvement of efficiency of gas filter at the natural gas valve station (천연가스 공급기지내 가스필터 성능개선에 관한 연구)

  • Cho Y.B.;Jeon K.S.;Her J.Y.;You K.H.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.1
    • /
    • pp.47-52
    • /
    • 1998
  • To eliminate foreign substance like metal rust and sand in natural gas pipeline, 250um strainer filter is used present in Korea Gas Corporation. But particles smaller than 250um passing the filter have bad effects to the valves and the measuring equipments. In order to eliminate small paticle in the pipeline, it is necessary to cut down the pore size of filter When we cut down the pore size of filter, the pressure difference between the front of filter and that of the rear part is increasing and disturb normal condition of gas supply. So it is very important to control the condition between the pore size of filter and the pressure difference. In this study, using head loss coefficient K, the estimation method of efficiency of gas filter according to the pore size and the pressure difference is presented.

  • PDF

Suggestion for Safety Improvement of Compressed Natural Gas Vehicle (압축천연가스 자동차의 안전성 향상을 위한 제언)

  • Kim, Young-Seob;Park, Kyo-Shik;Kim, Tae-Ok
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.4
    • /
    • pp.1-7
    • /
    • 2012
  • Systematic safety research by Korea Government has been made to enhance the safety of CNG (compressed natural gas) vehicles since the burst of compressed cylinder of an urban bus in August 9, 2010. This article summarizes some major activities to ensure the safety of CNG vehicles, which covers review of regulation, safety management system including standard of inspection and certification, and training program of inspectors and car mechanics. Specifically, the followings were reviewed; type of CNG cylinder, location of CNG cylinder, material and type of fuel line and vent line, modification of pipeline connection, installation of gas detector, installation of emergency shutdown valve, installation of protecting cover for cylinder, obligations for CNG vehicle filling station. improving periodical inspection, routine test on gas vehicles, training program for engaged in gas vehicles, and designation of safety manager for CNG bus company. This paper suggests how to improve safety of CNG vehicles as a result of review of above mentioned check items.

System dynamics simulation of the thermal dynamic processes in nuclear power plants

  • El-Sefy, Mohamed;Ezzeldin, Mohamed;El-Dakhakhni, Wael;Wiebe, Lydell;Nagasaki, Shinya
    • Nuclear Engineering and Technology
    • /
    • v.51 no.6
    • /
    • pp.1540-1553
    • /
    • 2019
  • A nuclear power plant (NPP) is a highly complex system-of-systems as manifested through its internal systems interdependence. The negative impact of such interdependence was demonstrated through the 2011 Fukushima Daiichi nuclear disaster. As such, there is a critical need for new strategies to overcome the limitations of current risk assessment techniques (e.g. the use of static event and fault tree schemes), particularly through simulation of the nonlinear dynamic feedback mechanisms between the different NPP systems/components. As the first and key step towards developing an integrated NPP dynamic probabilistic risk assessment platform that can account for such feedback mechanisms, the current study adopts a system dynamics simulation approach to model the thermal dynamic processes in: the reactor core; the secondary coolant system; and the pressurized water reactor. The reactor core and secondary coolant system parameters used to develop system dynamics models are based on those of the Palo Verde Nuclear Generating Station. These three system dynamics models are subsequently validated, using results from published work, under different system perturbations including the change in reactivity, the steam valve coefficient, the primary coolant flow, and others. Moving forward, the developed system dynamics models can be integrated with other interacting processes within a NPP to form the basis of a dynamic system-level (systemic) risk assessment tool.

SiRENE: A new generation of engineering simulator for real-time simulators at EDF

  • David Pialla;Stephanie Sala;Yann Morvan;Lucie Dreano;Denis Berne;Eleonore Bavoil
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.880-885
    • /
    • 2024
  • For Safety Assisted Engineering works, real-time simulators have emerged as a mandatory tool among all the key actors involved in the nuclear industry (utilities, designers and safety authorities). EDF, Electricité de France, as the leading worldwide nuclear power plant operator, has a crucial need for efficient and updated simulation tools for training, operating and safety analysis support. This paper will present the work performed at EDF/DT to develop a new generation of engineering simulator to fulfil these tasks. The project is called SiRENE, which is the acronym of Re-hosted Engineering Simulator in French. The project has been economically challenging. Therefore, to benefit from existing tools and experience, the SiRENE project combines: - A part of the process issued from the operating fleet training full-scope simulator. - An improvement of the simulator prediction reliability with the integration of High-Fidelity models, used in Safety Analysis. These High-Fidelity models address Nuclear Steam Supply System code, with CATHARE thermal-hydraulics system code and neutronics, with COCCINELLE code. - And taking advantage of the last generation and improvements of instructor station. The intensive and challenging uses of the new SiRENE engineering simulator are also discussed. The SiRENE simulator has to address different topics such as verification and validation of operating procedures, identification of safety paths, tests of I&C developments or modifications, tests on hydraulics system components (pump, valve etc.), support studies for Probabilistic Safety Analysis (PSA). etc. It also emerges that SiRENE simulator is a valuable tool for self-training of the newcomers in EDF nuclear engineering centers. As a modifiable tool and thanks to a skillful team managing the SiRENE project, specific and adapted modifications can be taken into account very quickly, in order to provide the best answers for our users' specific issues. Finally, the SiRENE simulator, and the associated configurations, has been distributed among the different engineering centers at EDF (DT in Lyon, DIPDE in Marseille and CNEPE in Tours). This distribution highlights a strong synergy and complementarity of the different engineering institutes at EDF, working together for a safer and a more profitable operating fleet.