• 제목/요약/키워드: Valve simulation

검색결과 696건 처리시간 0.029초

CVT 변속 동역학을 고려한 라인 레귤레이터 및 변속비 제어 밸브의 응답 특성 해석 (Analysis of Line Regulator Valve and Ratio Control Valve Considering CVT Shift Dynamics)

  • 정근수;김현수
    • 한국자동차공학회논문집
    • /
    • 제8권2호
    • /
    • pp.81-91
    • /
    • 2000
  • Dynamic models of line regulator valve(LRV) and ratio control valve (RCV) are obtained for an electronic controlled CVT. LRV and RCV are operated by variable force solenoid(VFS). Considering the CVT shift dynamics, oil pump's efficiency and saturation characteristics of VFS, simulations are performed and compared with test results. Simulation results are in good agreement with the experiments, which shows the validity of the dynamic models of LRV and RCV obtained. In addition, the effects of the orifice size in the exhaust port of RCV are investigated. Simulation results show that as the orifice size decreases, the residual pressure in the primary actuator increases which insures the large torque transmission capacity, meanwhile the duration time for the downshift increases.

  • PDF

Servo valve의 유동해석 (Flow Analysis of Servo Valve)

  • 박홍범;성형진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1221-1225
    • /
    • 2008
  • In this paper, analysis of pressure and flow characteristics have been performed with a servo valve. A number of servo valve have been used in various applications including the inserting device, bearing transportation and welding machine. By analysis of flow and pressure gradient, technology can be obtained about optimal simulation of high response servo valve for competitiveness. Spool displacement and ratio of inlet/outlet pressure can give big effects to flow and pressure inside servo valve.

  • PDF

Y형 세대별 정유량 밸브 개발에서의 CFD의 활용 (CFD for Y-type Constant Flowrate Valve Design)

  • 권우철;이병휘
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.488-491
    • /
    • 2004
  • Numerical analysis of the three dimensional turbulent flow field in a complex valve shape is carried out to confirm the flow field whether the designed valve shape is good or not. The simulation of the incompressible flow in a constant flowrate control valve is performed by using the commercial code, FLUENT/UNS 6.0. The results of flow field show the designed valve has some problems, therefore these will be good data for new valve design.

  • PDF

선박 엔진용 고압 3/2-Way 밸브의 유동특성 연구 (A Study on the Flow Characteristic of High Pressure 3/2-Way Valve for a Ship Engine)

  • 박시범;김진미;이철재;강정호
    • 한국기계가공학회지
    • /
    • 제11권3호
    • /
    • pp.35-40
    • /
    • 2012
  • The 3/2-way valve supplies the high pressure air to ship engine for starting engine. In this paper, the high pressure 3/2 way valve for ship engine has the goal as reverse engineering by searching the fluid characteristic at this valve. The reverse engineering of 3/2-way valve is measured directly by Verier-calipers and is compared with 3D scanner. The fluid characteristic in this valve is used for a simulation method by ANSYS CFX 12.1. On the contrary, discs and the shaft are as the important components on numerical simulation by controlling the air flow at this valve. The fluid characteristics are seen to make high velocity and complicated vortex around the shaft. And the flow coefficient is calculated in order to apply for industrial field.

파일럿형 압력 릴리프 밸브의 최적설계 (An Optimal Design of pilot type relief valve by Genetic Algorithm)

  • 김승우;안경관;양순용;이병룡;윤소남
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1006-1011
    • /
    • 2003
  • In this study, a novel systematic design procedure by Genetic Algorithm of a two stage relief valve is proposed. First of all, a mathematical model describing the dynamics of a balanced piston type relief valve has been derived. Governing equations such as dynamic equations for the main spool and the pilot spool and flow equations for each orifice are established. The mathematical model is verified by comparing the results of simulation with that of experiments. Furthermore, influences of the parameters on the dynamic characteristics of a relief valve have been investigated by simulation of the proposed model. Major design parameters on the valve response are determined, which affect the system response significantly. And then, using the determined parameters, the optimization of the two stage relief valve by Genetic Algorithm, which is a random search algorithm can find the global optimum without converging local optimum, is performed. The optimal design process of a two stage relief valve is presented to determine the major design parameters. Fitness function reflects the changing pressure according to parameters. It is shown that the genetic algorithms satisfactorily optimized the major design parameters of the two stage relief valve.

  • PDF

유전자 알고리즘을 이용한 2단 릴리프 밸브의 최적설계 (An Optimal Design of a two stage relief valve by Genetic Algorithm)

  • 김승우;안경관;이병룡
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.501-506
    • /
    • 2002
  • In this study, a novel systematic design procedure by Genetic Algorithm of a two stage relief valve is proposed. First of all. a mathematical model describing the dynamics of a balanced piston type relief valve has been derived. Governing equations such as dynamic equations for the main spool and the pilot spool and flow equations for each orifice are established. The mathematical model is verified by comparing the results of simulation with that of experiments. Furthermore, influences of the parameters on the dynamic characteristics of a relief valve have been investigated by simulation of the proposed model. Major design parameters on the valve response are determined, which affect the system response significantly. And then, using the determined parameters, the optimization of the two stage relief valve by Genetic Algorithm, which is a random search algorithm can find the global optimum without converging local optimum, is performed. The optimal design process of a two stage relief valve is presented to determine the major design parameters. Fitness function reflects the changing pressure according to parameters. It is shown that the genetic algorithms satisfactorily optimized the major design parameters of the two stage relief valve.

  • PDF

3D 프린팅을 이용한 고온용 솔레노이드 밸브의 시제품 제작 및 유량과 동적특성 평가 (Prototype Manufacturing Using 3D Printing and Characteristics of Flow Rate and Dynamics for High Temperature Solenoid Valve)

  • 이형욱;이용문;신보성;이태구;강명창
    • 한국정밀공학회지
    • /
    • 제33권5호
    • /
    • pp.341-348
    • /
    • 2016
  • The solenoid valve is used widely across various industries; however, solenoid valves for use in high-temperature environments have to be highly specified, such as those used in thermal power plants and steel mills. As such, we have developed a solenoid valve, using an already developed solenoid, to allow for more specific use. In this type of development method, use of 3D printing is very effective, allowing for a reduction in errors in design and production. This study includes a mathematical model of the solenoid valve. Then, the simulation from the mathematical model was performed using the AMESim (Advanced Modeling Environment for Simulation of Engineering Systems). We made a prototype valve using the simulation results and also measured the flow rate and dynamic performance.

서보모터를 이용한 Inline Co-axil 밸브 제어 (Control of Inline Co-Axil Valve using Servo Motor)

  • 이중엽;정태규;이수용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1115-1119
    • /
    • 2007
  • Five control methods (Speed Control, PID Gain Scheduling, Loop Time Control, Simple PID, Switching Control) have been applied to the control of an Inline Co-axial valve by the simulation of AMESim. The simulation results have shown that the speed control method is the most stable and the fastest way to reach to the set point in the simulation of the flow control. Moreover, It has been found that the five control methods have the almost same characteristics in the power consumption, the counter electromotive force, and the motor angular velocity. According to the analysis results, the fast and stable control characteristics of the speed control method is the most suitable for the flow control using a inline co-axial valve with a DC(BLCD) motor.

  • PDF

고압용 다이아프램 압축기 및 체크 밸브의 2-way FSI 수치해석 (TWO-WAY F냐 simulation OF THE DIAPHRAGM COMPRESSOR AND NON-RETURN CHECK VALVE)

  • 최범석;윤현기;유일수;박무룡
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2010년 춘계학술대회논문집
    • /
    • pp.86-92
    • /
    • 2010
  • A metal diaphragm compressor has been widely used for supplying a high pressures gas. This compressor mainly consists of gas oil space and metal diaphragm. Gas sucked in the gas space is compressed by an oscillating metal diaphragm existed between the gas and oil space. A non-return discharge and suction check-valve are components of the compressor that draw off the compressed oil and gas. Those components are self-actuated by differential pressures. Therefore, the rapid response and stable operating conditions are required. In the present study, to find out the dynamic behavior of the suction, discharge valve and diaphragm compressor, the unsteady flow field has been investigated numerically by using the unsteady two-way FSI (Fluid Structure Interaction) simulation method, $k-{\omega}$ turbulent model and mesh deformation.

  • PDF

SimulationX를 이용한 부하 감지형 메인 컨트롤밸브의 효율에 관한 연구 (A Study on the Efficiency of a Load Sensing Main Control Valve Using SimulationX)

  • 김동명;이정민;정원지;장주섭
    • 대한기계학회논문집A
    • /
    • 제40권1호
    • /
    • pp.87-95
    • /
    • 2016
  • 본 연구에서는 오픈센터 시스템과 부하 감지형 시스템의 해석모델을 개발하고 시스템의 특성과 효율을 분석하였다. 오픈 센터 방식의 메인 컨트롤 밸브의 압력과 유량 특성을 분석하기 위해 각각의 포트별로 시험을 수행하였다. 시스템의 특성 분석 전 단계에서 시험 결과와 해석 결과를 비교함으로써 해석모델의 신뢰성을 검토하였다. 신뢰성이 검증된 오픈 센터 방식의 메인컨트롤 밸브에 유량 분배 밸브를 추가하여 부하 감지형 메인 컨트롤 밸브의 해석모델을 개발하였다. 두 가지 시스템의 효율을 분석하기 위해 동일한 부하 조건에서 해석을 수행하였으며 각각의 부하 특성에 따른 효율을 검토하였다. 또한, 서로 다른 부하 조건에서 유량 분배 시스템의 특성을 분석함으로써 복합 동작에 대한 성능도 검토 하였다.