• 제목/요약/키워드: Valve open rate

Search Result 74, Processing Time 0.028 seconds

A Numerical Analysis on Flow and Strength of Ball Valve for petrochemistry (석유화학용 Ball Valve 유동 및 강도 수치해석)

  • Yi, Chung-Seub;Jeong, Hwi-Won;Jang, Sung-Cheol;Nam, Tae-Hee;Park, Jung-Ho;Yun, So-Nam
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.357-362
    • /
    • 2008
  • This study have goal with reverse engineering for petrochemistry of high pressure ball valve for localization. Ball valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25 In order to localize the petrochemistry high pressure control valve. Numerical simulation using CFD(Computational Fluid Dynamic) in order to predict a mass flow rate and a flow coefficient form flow dynamic point of view. The working fluid assumed the water($H_2O$). The valve inlet and outlet setup a pressure boundary condition. The outlet pressure was fixed by atmospheric pressure and calculated inlet velocity 5m/s. CFD solver used STAR-CCM+ which is commercial code. The result shows change of mass flow rate according to opening and closing angle of valve. Flow decrease observed open valve that equal percentage flow paten which is general inclination of ball valve. The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and seat structure.

  • PDF

A study on the flow charateristics of temperature control valve by pressure compensation (압력 평형식 온도 조절 밸브의 유동특성 연구)

  • Kim, T.-A.;Kim, Youn J.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.419-424
    • /
    • 2001
  • TCV(Temperature control valve by pressure compensation) controls temperature constantly, when it is sending steam or high temperature water to heating device of heat exchanger. For designing TCV, the ratio of piston and hole diameters is one of the important design parameters. Numerical analysis is carried out to elucidate the flow characteristics in the TCV with different port areas of cold and hot waters, using the k-$\epsilon$ turbulence model and Cartesian cut-cell method. Numerical results show that the exit flow rate is mainly affected by pressure distribution in the piston.

  • PDF

Braking Pressure Characteristics of Solenoid-Flow Control Type ABS by PWM Control (PWM 제어에 의한 솔레노이드-유량제어방식 ABS의 제동압력 특성)

  • Song, Chang-Seop;Yang, Hae-Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.146-154
    • /
    • 1997
  • Solenoid-folw control type ABS is used with a 'dump and reapply' pressure control arrangement instead of using 2/2 (normal open/close) solenoid valves in convensional systems(sol. -sol. control type), a flow control valve is used which replaces the (no) inlet valve. The flow control valve controls fluid flow providing a nearly constant reapply rate( .theta. ) after the dump plase of ABS operation. In this study, to investigate a characteristics of brake pressure by PWM control, test rig was consisted of ABS hydraulic modulator, digital controller, pneumatic power supply and brake master cylinder. For comparison with experi- mental results, system modelling and computer simulation were performed. As a result, experiment results showed fairly agreement with the simulation. Also, it is shown that the pressure gradient (tan .theta. ) is affected by pressure, frequency, duty ratio and expressed with an exponential funtion.

  • PDF

The Study of Mechanical Simulation for Human Respiratory System (인체 호흡 모사를 위한 기계적 장치 연구)

  • Chi, S.H.;Lee, M.K.;Lee, T.S.;Choi, Y.S.;Oh, S.K.
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.4
    • /
    • pp.323-328
    • /
    • 2008
  • A patient with respiratory disorders such as a sleep apnea is increasing as the obese patient increase on the modern society. Positive Airway Pressure (PAP) devices are used in curing patient with respiratory disorders and turn out to be efficacious for patients of 75%. However, these devices are required for evaluating their performance to improve their performance by the mechanical breathing simulator. Recently, the mechanical breathing simulator was studied by the real time feedback control. However, the mechanical breathing simulator by an open loop control was specially required in order to analyze the effect of flow rate and pressure after operating the breathing auxiliary devices. Therefore the aims of this study were to make the mechanical breathing simulator by a piston motion and a valve function from the characteristic test of valve and motor, and to duplicate the flow rate and pressure profiles of some breathing patterns: normal and three disorder patterns. The mechanical simulator is composed cylinder, valve, ball screw and the motor. Also, the characteristic test of the motor and the valve were accomplished in order to define the relationship between the characteristics of simulator and the breathing profiles. Then, the flow rate and pressure profile of human breathing patterns were duplicated by the control of motor and valve. The result showed that the simulator reasonably duplicated the characteristics of human patterns: normal, obstructive sleep apnea (OSA), mild hypopnea with snore and mouth expiration patterns. However, we need to improve this simulator in detail and to validate this method for other patterns.

Reoperations for valvular heart disease: report of 29 cases (심장판막 재수술: 29례 보)

  • 김은기
    • Journal of Chest Surgery
    • /
    • v.16 no.4
    • /
    • pp.498-505
    • /
    • 1983
  • It has been over 20 years since successful operations of Cardiac valves at the Department of Thoracic and Cardiovascular surgery, college of medicine, Yonsei University. About six hundreds of patients with severely symptomatic valvular heart disease have had valve operations with complete loss or sharp decrease in their cardiac symptoms since 1956. As the number of cardiac patient increases, reoperation on valves assumes greater importance. To define the group of patients undergoing reoperations on valves and the factors influencing their survival, we have reviewed our experiences of the reoperation on valves at the Yonsei University, Severance Hospital. This is a report of 29 cases which was undergone secondary or more surgery for valvular heart disease from 1966 to 1983. The primary operations includes 159 cases of open heart surgery from 1966 to 1975 and 476 cases from 1976 to march, 1983. The secondary operations are classified into groups of secondary valvuloplasty or valvotomy [8 cases], prosthetic valve replacement following valvuloplasty or valvotomy [14 cases] and prosthetic valve rereplacement [2 case] for such as calcification, degeneration and perforation of the cusps and paravalvular leakage, of the bioprosthetic valves. The leading indication for reoperation of mitral valve was restenosis or stenoinsufficiency, The indications of aortic valve replacement was active bacterial endocarditis, medically uncontrollable prosthetic endocarditis or paravalvular leakage. Overall death rate of the reoperation was 17.4% [5 death among the 29 patients] and the leading causes of death were myocardial failure, arrhythmia, cerebral embolism, acute renal failure due to low output syndrome. And it was followed by sepsis associated with active prosthetic endocarditis. The death rate of reoperation was 4.3% in the elective cases except urgent cases and the death rate of overall cardiac valve except reoperation cases was 4.1% in the last two years. Although the general mortality of reoperation was high, both mortality rates were comparable except emergency cases due to urgent preoperative patient’s condition.

  • PDF

Effect of Flow Control Valve Type on the Performance of DME High Pressure Fuel Pump (유량 제어 밸브 방식이 DME 고압 연료 펌프의 성능에 미치는 영향)

  • Sin, Yunsub;Lee, Geesoo;Kim, Hyunchul;Jeong, Soo-Jin;Park, Kyungyeong;Suh, Hyun Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.67-73
    • /
    • 2013
  • This experimental work described the effect of flow control valve type on the performance of wobble plate type fuel pump for the stable DME fuel supply. In order to study this, different four types of flow control valves (ITV, SCV, IMV and MPROP) were installed on the wobble plate fuel pump, and fuel flow rate, torque, and temperature variation of pump were investigated under various operating conditions by using pump performance test system. It was revealed that wobble plate type fuel pump worked well with ITV and SCV control valve, and the flow rate and torque of fuel pump was in proportion to the value of valve open duty. The maximum flow rate and torque of fuel pump were achieved around the 50% duty of control valve. Temperature variation at all pump measuring points were under $60^{\circ}C$ which is acceptable.

Clinical experience of open heart surgery: a report of 204 cases (개심술 204례의 임상적 고찰)

  • 문병탁
    • Journal of Chest Surgery
    • /
    • v.17 no.2
    • /
    • pp.305-314
    • /
    • 1984
  • From May 1977 to April 1984, 204 cases of open heart surgery were performed under cardiopulmonary bypass. There were 99 male and 105 female patients ranging in age from 19 months to 58 years. 136 cases [66.7%] were congenital heart disease, and 68 cases [33.3%] were acquired heart disease, which were 66 valvular disease [97.1%], 1 IVC obstruction, and 1 myxoma. There were 136 congenital heart anomaly with 16 operative deaths [11.8%], consisting of 94 acyanotic cases with 7 death [7.4%] and 42 cases of cyanotic cases with 9 deaths [21.4%]. In 66 patients of acquired valvular disease, 52 valves were implanted; 47 mitral valve replacement with 4 death [8.5%] and 5 double valve replacement [MVR+AVR] with 1 death [20%]. Postoperative, warfarin sodium was medicated with checking prothrombin time. Finally, the operative mortality was 11.8% in congenital anomaly, and 11.8% in acquired heart disease, overall mortality rate was 8.5%.

  • PDF

A High Power Micropump Using Active Check Valves Driven by Piezoelectric Actuators (압전구동 능동형 체크밸브를 이용한 고출력 마이크로펌프)

  • Kang, Jung-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.4
    • /
    • pp.39-47
    • /
    • 2005
  • In this paper, a novel high power micropump using active check valves in place of conventional passive check valves employed at the inlet and outlet ports is presented. It actively controls open/close motion of check valves using piezoelectric actuator for expansion/contraction of pump chamber. A prototype micropump having an effective size of $17mm{\times}8mm{\times}11mm$ is fabricated. Frequency-dependent flow rate characteristics, bi-directional flow characteristics and load characteristics are experimentally investigated using a timing control method for valve closing motion. From the obtained experimental results, it is ascertained that optimal values of the phase shift compared to the voltage to drive pump chamber are $15^{\circ}$ for inlet check valve and $195^{\circ}$ for outlet. Based on the obtained results, a sheet-type active shuttle valve that has a unified valve-body for inlet and outlet check valves is proposed. A micropump with an effective size of $10mm{\times}10mm{\times}10mm$ is fabricated and the basic characteristics are experimentally investigated.

  • PDF

Structural Stability of High-temperature Butterfly Valve Using Interaction Analysis

  • Lee, Moon-Hee;Son, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_1
    • /
    • pp.881-888
    • /
    • 2020
  • A butterfly valve is a valve that adjusts flow rate by rotating a disc for about 90° with respect to the axis that is perpendicular to the flow path from the center of its body. This valve can be manufactured for low-temperature, high-temperature and high-pressure conditions because there are few restrictions on the used materials. However, the development of valves that can be used in a 600℃ environment is subject to many constraints. In this study, the butterfly valve's stability was evaluated by a fluid-structured interaction analysis, thermal-structure interaction analysis, and seismic analysis for the development of valves that can be used in high-temperature environments. When the reverse-pressure was applied to the valve in the structural analysis, the stress was low in the body and seat compared to the normal pressure. Compared with the allowable strength of the material for the parts of the valve system, the minimum safety factor was approximately 1.4, so the valve was stable. As a result of applying the design pressures of 0.5 MPa and 600℃ under the load conditions in the thermal-structural analysis, the safety factor in the valve body was about 3.4 when the normal pressure was applied and about 2.7 when the reverse pressure was applied. The stability of the fluid-structure interaction analysis was determined to be stable compared to the 600℃ yield strength of the material, and about 2.2 for the 40° open-angle disc for the valve body. In seismic analysis, the maximum value of the valve's stress value was about 9% to 11% when the seismic load was applied compared to the general structural analysis. Based on the results of this study, the structural stability and design feasibility of high-temperature valves that can be used in cogeneration plants and other power plants are presented.