• Title/Summary/Keyword: Valve Torque

Search Result 163, Processing Time 0.02 seconds

Force Control of Hybrid Actuator using Learning Vector Quantization Neural Network

  • Ahn, Kyoung-Kwan;Thai Chau, Nguyen Huynh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.290-295
    • /
    • 2005
  • Hydraulic actuators are important in modern industry due to high power, fast response, and high stiffness. In recent years, hybrid actuation system, which combines electric and hydraulic technology in a compact unit, can be adapted to a wide variety of force, speed and torque requirements. Moreover, the hybrid actuation system has dealt with the energy consumption and noise problem existed in the conventional hydraulic system. Therefore, hybrid actuator has a wide range of application fields such as plastic injection-molding and metal forming technology, where force or pressure control is the most important technology. In this paper, the solution for force control of hybrid system is presented. However, some limitations still exist such as deterioration of the performance of transient response due to the variable environment stiffness. Therefore, intelligent switching control using Learning Vector Quantization Neural Network (LVQNN) is newly proposed in this paper in order to overcome these limitations. Experiments are carried out to evaluate the effectiveness of the proposed algorithm with large variation of stiffness of external environment. In addition, it is understood that the new system has energy saving effect even though it has almost the same response as that of valve controlled system.

  • PDF

Development of the 3-D Bulk Motion Index for In-Cylinder Flow Induced by Induction System (II) - Based on the Steady Flow Rig Test Results - (흡기시스템을 통해 실린더로 유도되는 공기의 3차원 Bulk Motion Index 개발 (II) - 정상유동실험결과를 중심으로 -)

  • Yun, Jeong-Eui;Nam, Hyeon-Sik;Kim, Myung-Hwan;Min, Sun-Ki;Park, Pyeong-Wan;Kim, Ki-Seong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1066-1073
    • /
    • 2006
  • Recently, because the variable induction systems are adopted to intake system, in-cylinder flow induced by induction system is very complex. Therefore it is very difficult to describe the in-cylinder bulk flow characteristics using the conventional swirl or tumble coefficient. In this study, in order to clarify the 3-D angular flow characteristics of in-cylinder bulk motion in the developing process of variable induction system, we introduced the new 3-D angular flow index, angular flow coefficient($N_B$) Finally, to confirm the index, we carried out the steady flow rig test for intake port of test engine varying valve lift on the test matrix.

Development of a screw type super-charger for part load control (부분부하제어를 위한 스크류형 과급기 개발)

  • Bae, Jae-Il;Bae, Sin-Chul
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.353-358
    • /
    • 2001
  • Turbo-charging or Super-charging has been used to boost engine power for Gasoline Engine and Diesel Engine came to the world at the beginning of $20^{th}$ century. So far Turbo-Charger has enjoyed a high reputation in the charging filed for its technical advantages such as no demand of operation power from engine and an excellent charging effect in the event of a static operation at mid- and high engine speed. A mechanically driven Super-Charger, however, is now emerging in order to meet demands of the age of speed such as high engine power for a quick change of the driving mode - high engine torque even at low engine speed. Since Super-Charger needs driving power from engine, it cannot improve its relatively higher fuel consumption against that of Turbo-Charger. This negative point is still an obstacle to the wide use of Super-Charger. Super-Charger using Screw-type compressor which has already had a considerable base in air compressor market will fulfill this purpose of improving fuel consumption by minimizing operation power owing to no charging at idling or partially loading driving. This study aims to develop power control concept to achieve this minimization of operation power.

  • PDF

Motor Torque Analysis for Motor-Operated Valves Performance Evaluation (모터구동밸브의 성능 진단을 위한 모터 토크 분석)

  • Kwon, Seok-Jun;Lee, Sang-Hoey;Park, Joo-Moon;Sung, Key-Yong;Lee, Heung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.337-341
    • /
    • 2002
  • 본 논문은 원자력 발전소의 안전에 있어 매우 큰 비중을 차지하는 모터 구동밸브(Motor-operated valve : MOV)의 성능진단에 직접 센서를 장착하지 않고 전기신호만을 이용하여 성능진단의 가능성을 보이기 위한 것이다. 모터 토크를 계산하기 위한 두 가지 방법으로서 D-Q frame 변환 방법과 Air-Gap 토크 식을 제시하였고, 계산된 두 토크 값은 정확하게 일치하였다. 부하를 변동하면서 토크미터로 측정된 토크 갑과는 1%의 오차범위 내에서 일치함을 확인했다. 따라서 두 토크 식은 모터구동 밸브의 성능진단을 위한 식으로 사용해도 좋다는 결론을 얻어낼 수 있었다. 계산된 토크를 주파수 분석함으로서 부하의 변동에 따라서 슬립 및 모터속도 주파수가 변화됨을 알 수 있었다. 즉 주파수 분석을 통해 MOV의 모터 및 구동기 부분의 성능 저하 감시에 유용한 단서를 제공해 줄 것이다. 결과적으로, MOV에서 전기신호의 분석은 시스템의 전기 및 기계적인 성능 저하 감시에 이용될 수 있을 것으로 기대된다.

  • PDF

A Study on the Antiabrasion of the Aircraft Carbon Disk Brake (항공기의 탄소 디스크 브레이크의 내마모성에 관한 연구)

  • Lee, Jang-Hyun;Yum, Hyun-Ho;Hong, Min-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.968-975
    • /
    • 2012
  • ABS(Anti-skid Brake System) had been developed on purpose of most effect at breaking in limited runway. An aircraft has a large amount of kinetic energy on landing. When the brakes are applied, the kinetic energy of the aircraft is dissipated as heat energy in the brake disks between the tire and the ground. The optimum value of the slip during braking is the value at the maximum coefficient of friction. An anti-skid system should maintain the brake torque at a level corresponding to this optimum value of slip. This system is electric control system for brake control valve at effective control to prevent slip and wheel speed or speed ratio. In this study we measured the thickness of the carbon disk before and after to find its wear and it shows that carbon disk brake has higher stiffness and strength than metal disk at high temperature. In addition, thermal structural stability and appropriate frictional coefficient of the carbon disk brake prove its possible substitution of metal disk brake.

A Study on the New 3-D Angular Flow Index for Evaluation of In-Cylinder Bulk Flow Characteristics of the Air Induced by Variable Induction System (가변 흡기시스템에 의해 유도되는 흡입공기의 유동특성 평가를 위한 새로운 3차원 회전유동 지수에 관한 연구)

  • Yun, Jeong-Eui;Nam, Hyeon-Sik;Kim, Myung-Hwan;Min, Sun-Ki;Sim, Dae-Gon;Park, Pyeong-Wan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.99-105
    • /
    • 2007
  • It is very important to clarify the 3-D angular flow characteristics of in-cylinder bulk motion in the developing process of variable induction system. In-cylinder flow induced by variable induction system is very complex, so we can not describe the in-cylinder bulk flow characteristics using the conventional swirl or tumble coefficient. In this study, we introduced the new 3-D angular flow index, angular flow coefficient($N_B$), for in-cylinder bulk flow characteristics. And also, to confirm the index, we carried out the steady flow rig test for intake port of test engine varying valve lift on the test matrix.

RESEARCH ON ULTRA LOW EMISSION TECHNOLOGY FOR LARGE DISPLACEMENT MOTORCYCLES

  • Kono, T.;Miyata, H.;Uraki, M.;Yamazaki, R.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.277-282
    • /
    • 2006
  • With the aim of achieving half the regulated value of EURO-3 Emission Regulations, an ultra low emission motorcycle has been developed based on a motorcycle with an 1800 $cm^3$, horizontal opposed 6-cylinder engine. For the fuel supply system, an electronically controlled fuel injection system was applied. For the emission purification system, three-way catalysts, a feedback control system with a LAF(Linear Air-Fuel ratio) sensor, and a secondary air induction system were applied. To reduce CO and HC emissions during cold starting, an early catalyst activation method combining RACV(Rotary Air Control Valve) and retarded ignition timing was applied. After the catalyst activation, air-fuel ratio was controlled to maximize the purification ratio of the catalyst according to vehicle speed. For the air-fuel ratio control system, the LAF sensor was used. Furthermore, fine adjustment by the LAF feedback control reduced torque fluctuation due to the air-fuel ratio change. As a result, smooth ride feeling was maintained. Owing to these technologies, half the regulated value of EURO-3 has been achieved without any negative impact to the large-scaled motorcycles' drivability. This paper presents the developed ultra low emission technologies including the control method using an LAF sensor.

One Dimensional Analysis of Hydrostatic Power Steering Unit Composed of Two Gerotors (두 개의 지로터로 구성된 전유압 파워스티어링 장치의 1차원 해석)

  • Kim, Kap Tae;Ryu, Beom Sahng;Kim, Kyung Sik;Jeong, Hwang Hun
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.113-124
    • /
    • 2020
  • Most of the work of construction equipment and agricultural machinery is done in off-road conditions. Autonomous driving required in these conditions uses GPS sensors, and PID controllers to control their speed and position. The hydrostatic steering, which is composed of a PSU, hydraulic hoses, and cylinders, rather than a mechanical coupling is used in these equipments. The PSU plays a key role in hydrostatic steering. Precise control of the position under various conditions requires detailed behavioral analysis of the basic components and operation. Two Gerotor PSU is now a commonly used safer option. The components of the PSU can be divided into mechanical and hydraulic actuating elements by its behavior. Since the system is combined by mechanical and hydraulic elements, the modelings are performed using Amesim, which is one of the most effective for the multi-domain dynamic system analysis. To confirm the validity of the model, input torque and pressures are checked with varying steering speed. The opening and the steering speed of normal and newly designed control valve set is investigated with the effect of centering spring force and friction. Finally, simulation results with fully detailed model with two gerotors are analyzed and compared with simple model.

Research and Development of a 2.9 Liter Light-duty DME Truck Using Common Rail Fuel Injection Systems (커먼레일 연료분사 시스템을 장착한 2.9 리터급 경량 DME 트럭의 연구 및 개발)

  • Jeong, Soo-Jin;Park, Jung-Kwon;Oh, Se-Doo;Lee, Gee-Soo;Lim, Ock-Taek;Pyo, Young-Dug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.107-116
    • /
    • 2012
  • In this study, the trucks(2.9-liter) have been developed to use DME as fuel, and performance test of the vehicle's DME engine, power, emissions, fuel economy and vehicle aspects was conducted. For experiments, the fuel system(common-rail injectors and high-pressure pump included) and the engine control logic was developed, and ECU mapping was performed. As a result, the rail pressure from 40MPa to approximately 65% increase compared to the base injector has been confirmed that. Also, the pump discharge flow is 15.5 kg/h when the fuel rail pressure is 400rpm(40MPa), and the pump discharge flow is 92.1 kg/h when the fuel rail pressure is 2,000rpm(40MPa). The maximum value of full-load torque capability is 25.5 kgfm(based on 2,000 rpm), and more than 90% compared to the level of the diesel engine were obtained. The DME vehicle was developed in this study, 120 km/h can drive to the stable, and calculated in accordance with the carbon-balance method of fuel consumptions is 5.7 km/L.

An Analytical Study on the Improvement of the Performance of Swivel Valve Tube Couplers (스위벨 밸브 튜브 커플러 개발을 위한 해석 연구)

  • Lee, Jun-Ho;Sung, Jae-Kyeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.1-6
    • /
    • 2011
  • This study focused on the localization of swivel type tube couplers, which all depend on imports. In this study, a computer application analysis was performed using a finite element method as a preliminary study. In the major developments related to the objective of this study, the air brake system produced by car makers represents a different in the installation point of an air tank according to the type of cars or in the length and direction of its hoses and that leads to cause lots of problems. For solving such problems, the design of the major elements in a swivel type tube coupler was analyzed using a finite element method, and its validity was also verified. In the process that verifies the validity of this study, it was necessary to investigate how much external force affects the desorption of the tube support, which is the most important element in swivel type tube couplers. For achieving the investigation, a pressure test was implemented for the tube support according to the Federal Motor Vehicle Safety Standards(FMVSS). In the results of the pressure test, all samples satisfied the FMVSS. In addition, several tests were implemented by installing the sample of the developed swivel type tube coupler to an actual vehicle. In particular, rotation tests with various angles were applied by welding the swivel type coupler to an air tank through an argon welding process. In the results of the installing test for an actual vehicle, it was verified that the designed structure was determined as a structure that is able to endure the eccentric torque and deformation pressure applied to several directions that are the major problems in such fixed type tube couplers. Therefore, in the comparison of the performance of the developed product with the product of PARKER, it was possible to verify that the localized swivel type tube coupler developed in this study shows more excellent than that of the existing products by PARKER.