• 제목/요약/키워드: Valve Spring

검색결과 169건 처리시간 0.024초

안전릴리프밸브의 블로우 다운 예측 및 유체-구조 연성해석 (Blowdown Prediction of Safety Relief Valve and FSI Analysis)

  • 최지원;장시환;이권희
    • 한국산학기술학회논문지
    • /
    • 제18권12호
    • /
    • pp.729-734
    • /
    • 2017
  • 안전릴리프밸브는 배관라인 혹은 탱크의 과도한 압력을 완화하고 사용 적정압력 수준으로 유지해주는 장치이다. 안전릴리프밸브는 스프링 보닛에 통풍구가 대기 쪽으로 혹은 배출구 쪽으로 뚫려 있는지에 따라 배압의 변화에 직접적으로 영향을 받게 된다. 배압은 축적 배압(Built-up back pressure)과 부과 배압(superimposed back pressure)으로 나뉘게 되며 사용조건에 따라 배압의 특성이 달라진다. 본 연구에서 사용되는 안전밸브는 Conventional Safety Relief Valve로써, 배압의 특성을 가정하였다. 또한 개방력과 스프링력 사이의 힘의 평형 방정식을 세워 이론적 접근방법으로 초기 스프링 변위를 구하였다. 디스크가 받는 반력 즉 개방력과 스프링력을 비교하여 블로우 다운을 예측하였다. 블로우 다운은 설정 압력과 디스크 재닫힘 압력 간의 차이다. 본 연구는 ASME 규격 코드에 따라서 블로우 다운 시험 전에 전산 유동해석프로그램 CFX17.1을 이용하여 수치적으로 예측하였음을 밝힌다. 또한 유체-구조 연성해석(fluid-structure interaction analysis)을 통해 안전밸브 트림부의 안전성을 검토하였다. 향후, 시험과 전산수치해석 값을 서로 비교하여 블로우 다운 이론적 접근방법과 유동해석방법을 제안하고자 한다.

부품간의 접촉을 고려한 유연체모델을 이용한 엔진 밸브트레인의 동특성 해석 (Dynamic Analysis of Engine Valve Train with Flexible Multibody Model Considering Contact between Components)

  • 황원걸;성원석;안기원
    • 한국자동차공학회논문집
    • /
    • 제19권1호
    • /
    • pp.125-132
    • /
    • 2011
  • The dynamic characteristics of valve train are responsible for the dynamic performances of engine. We derived the equation of motion for 6 degrees of freedom model of the valve train. Computer model is also developed with flexible multibody model considering contact between components. The simulation results with these two models are compared with experimental results. We investigated the effect of the two spring models, TSDA (Translational Spring Damper Actuator) element and flexible body model, on the valve behavior and spring force. It is found that the dynamic behavior of the two models are not very different at normal operational velocity of the engine. By modeling contact between cam and tappet, the stress distributions of the cam were found. Using stress distribution obtained, contact width and contact stresses of the cam surface were calculated with Hertz contact theory.

스프링하중을 고려한 디젤차량용 오버플로우 밸브 성능평가 (Overflow Valve and Performance Evaluation System for Diesel Cars based on Spring Load)

  • 윤달환
    • 전기전자학회논문지
    • /
    • 제20권2호
    • /
    • pp.200-204
    • /
    • 2016
  • 본 연구에서는 유로형(EURO type) 클린 디젤 CRDI(common rail direct injection) 엔진용 오버플로우 밸브 성능 평가 시스템을 구현한다. 친환경 조건에 맞도록 정밀 기능을 구비한 오버플로우를 위해 스프링의 하중을 고려한 구현이 중요하다. 특히 정밀제어에 따른 디젤 차량의 성능평가는 연비 향상과 환경 규제 만족이 필연적이다. 이에 성능평가를 위한 평가 알고리즘의 기본 조건은 100cc 미만에서 3.0 bar, 150 cc 이상에서 3.3 bar, 250 cc이상에서 4.0 bar를 사용하여 시험한다.

Vertical uplift of suspension equipment due to hanger slackening: Experimental and numerical investigation

  • Yang, Zhenyu;He, Chang;Mosalam, Khalid M.;Xie, Qiang
    • Structural Engineering and Mechanics
    • /
    • 제82권6호
    • /
    • pp.735-745
    • /
    • 2022
  • The suspension thyristor valve can generate tremendous vertical acceleration responses in layers and large tension forces in hangers. A shaking table test of a scaled-down model of thyristor valves suspended on a hall building is performed to qualify the risk of vertical uplift of two representative types of valves, the chain valve and the rigid valve. Besides, an analytical model is established to investigate the source of the slackening of hangers. The test results show that the valves frequently experience a large vertical acceleration response. The soft spring joint can significantly reduce acceleration, but is still unable to prevent vertical uplift of the chain valve. The analytical model shows a stiffer roof and inter-story connection both contribute to a higher risk of vertical uplift for a rigid valve. In addition, the planar eccentricity and short hangers, which result in torsional motion of the valve, increase the possibility of vertical uplift for a chain valve. Therefore, spring joints with additional viscous dampers and symmetric layout in each layer are recommended for the rigid and chain valve, respectively, to prevent the uplift of valves.

공진에 의한 터빈 Control Valve 이상 진동 (Abnormal Vibration of Turbine Control Valve due to Resonance)

  • 구재량;김성휘;고우식;이우광;김연환;황재현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.2100-2104
    • /
    • 2004
  • Amount of Electricity which product generator decide control valve at Turbine. Operating method of Control valve have two mode. First operating method is Partial Arc Admission, and second operating method is Full Arc Admission. Failure of Control Valve have on serious damage electricity lineage. In this Paper, We have investigated resonance that Control Valve spring casing.

  • PDF

자동차 엔진 밸브 스프링에 사용되는 비원형 스프링 선의 단면 형상 최적화 (Shape Optimization of the Cross Section for a Non-circular Spring Wire of Valve Springs for an Automotive Engine)

  • 김도중;김영경
    • 한국자동차공학회논문집
    • /
    • 제19권2호
    • /
    • pp.117-124
    • /
    • 2011
  • Valve springs with non-circular cross-section are widely used in automotive engines. Because of the reduced height, the oval cross-section provides some merits in its install height and stress distribution. This paper introduces a new method to generate optimal shape of the non-circular cross-section. For given width and height, arbitrary shape of the cross-section are described using the Hermite spline curves. Cross-section area and maximum stress level are chosen as performance indices, and nonlinear optimization problems are formulated with inequality constraints. Compared to a production spring wire, cross-section area can be reduced about 2.4 [%] without increasing maximum stress level. In addition, the other approach gives an optimum cross-section which reduces maximum stress level of 2.0 [%] without increasing cross-section area.

LNG 선박용 spring load 안전방출밸브의 유량 성능시험 (Flow capacity test of spring load safety relief valves used in LNG)

  • 박경암;이생희;김경권;고장훈
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.95-98
    • /
    • 2006
  • Many LNG ships will be constructed in Korea and the demand of safety valves is increasing. The most important performance of the developed safety relief valves for LNG ship is flow capacity. Flow capacity tests for 8 sizes of developed safety valves were conducted in the high pressure gas flow standard system in KRISS. The initial spring force adjustment was important for setting pressure of the safety valve. The procedure of data reduction and evaluation of the safety valve performance are suggested. This procedure was approved by French Bureau Veritas and Lloyd's Register.

  • PDF

Distributed parameters modeling for the dynamic stiffness of a spring tube in servo valves

  • Lv, Xinbei;Saha, Bijan Krishna;Wu, You;Li, Songjing
    • Structural Engineering and Mechanics
    • /
    • 제75권3호
    • /
    • pp.327-337
    • /
    • 2020
  • The stability and dynamic performance of a flapper-nozzle servo valve depend on several factors, such as the motion of the armature component and the deformation of the spring tube. As the only connection between the armature component and the fixed end, the spring tube plays a decisive role in the dynamic response of the entire system. Aiming at predicting the vibration characteristics of the servo valves to combine them with the control algorithm, an innovative dynamic stiffness based on a distributed parameter model (DPM) is proposed that can reflect the dynamic deformation of the spring tube and a suitable discrete method is applied according to the working condition of the spring tube. With the motion equation derived by DPM, which includes the impact of inertia, damping, and stiffness force, the mathematical model of the spring tube dynamic stiffness is established. Subsequently, a suitable program for this model is confirmed that guarantees the simulation accuracy while controlling the time consumption. Ultimately, the transient response of the spring tube is also evaluated by a finite element method (FEM). The agreement between the simulation results of the two methods shows that dynamic stiffness based on DPM is suitable for predicting the transient response of the spring tube.

SimulationX를 이용한 Remote Control Valve의 특성 분석에 관한 연구 (A Study on the Characteristic of Remote Control Valve Using Simulation X)

  • 정유성;정원지;이산성;이정민;최경신
    • 한국기계가공학회지
    • /
    • 제16권5호
    • /
    • pp.78-84
    • /
    • 2017
  • Compared to other types of power, hydraulic energy is the most commonly used for heavy vehicles and ships because it has fewer location and space constraints, and its controllability can be maintained even under adverse conditions. Operators have controlled a main control valve of ship winches by pushing or pulling the lever, which is directly connected to the spool. However, because of the spatial arrangement, the importance of remote control valves has emerged. In this paper, experiments of the hysteresis characteristics were performed by analyzing the remote-control valve using a valve tester and RA2300. The validity was verified by comparing with the analytical model using SimulationX as the hydraulic analysis program. This study examined the effects of the spool's notch (Non, End-mill, and Spherical) and the effects of stiffness and pre-load of the spool spring on Spool stroke, open area, and hysteresis characteristics. It is considered possible to reduce the cost and the, trial and error process in designing remote-control valves in the future.

산업용 안전 릴리프밸브 유동특성에 관한 수치연구 (A Numerical Study on the Flow Characteristics through an Industrial Safety Relief Valve)

  • 강상모;이봉희
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권5호
    • /
    • pp.696-704
    • /
    • 2009
  • In this paper, the flow characteristics through an industrial safety relief valve used to protect the crankcase room in a large-sized marine engine have been numerically investigated using the moving-mesh strategy. With the room pressure higher than the cracking one, the spring-loaded disc becomes open and then the air in the room blows off into the atmosphere, resulting in the reduction of the room pressure and then the shutoff of the disc. Numerical simulations are performed on the compressible air flow through the relief valve (${\phi}160mm$) with the initial room pressure (0.11 bar or 0.12bar) higher than the cracking one (0.1 bar). The numerical method has been validated by comparing the results with the empirical ones. Results show that the disc motion and flow characteristics can be successfully simulated using the moving-mesh strategy and depend strongly on the spring stiffness and the flow passage shape. With increasing spring stiffness, the maximum disc displacement decreases and thus the total disc-opening time also decreases. In addition, the flow passage shape makes a significant effect on the velocity and direction of the flow.