• Title/Summary/Keyword: Valve Orifice Area

Search Result 34, Processing Time 0.022 seconds

Flow Visualization of Plastic type PCV Valve with Horizontal Force (수평력을 받는 Plastic type PCV 밸브 내부 유동 가시화)

  • Choi, Yoon-Hwan;Lee, Yeon-Won
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2012
  • PCV(Positive Crankcase Ventilation) system is designed to remove blowby gas. In this system, a PCV valve is attached in a manifold suction tube to control the flow rate of blowby gas which generates various operating conditions of an automotive engine. As this valve plays a crucial role, the demand in its design is high owing to the small size and high velocity. For this reason, a numerical investigation was carried out to understand both the spool dynamic motion and internal fluid flow characteristics. As a result, the spool dynamic characteristics(i.e. displacement, velocity, acting force), increase in direct proportion to the magnitude of the pressure difference and indicate periodic oscillating motions. Moreover, the velocity at the orifice region decreases according to the increase in differential pressure due to energy loss caused by the sudden decrease of flow area at the orifice region and the increase of flow volume in front of the spool head. Finally, the mass flow rate at the outlet decreases with the increase of spool displacement.

Nose Landing Gear Drop-test Simulation using Numerical Analysis about Orifice (오리피스 유량해석을 통한 전륜 착륙장치의 착륙성능평가)

  • Hwang, Jaeup;Bae, Jaesung;Hwang, Jaihyuk;Hong, Yehsun;Park, Sangjoon;Chung, Taekyong
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.1
    • /
    • pp.18-23
    • /
    • 2014
  • This thesis is simulated a aircraft nose landing gear drop-test. flow rate-to-pressure difference characteristics of damping orifices for a nose landing gear is investigated by CFD analyses. Orifice is kind of poppet valve type. it is simulated pressure drop with variable orifice area. it is simulated landing gear model by using ADAMS with CFD result. It's performance evaluated landing gear drop-test and analyzed the results.

Aortic Valve Replacement with Patch Enlargement of Aortic Annulus in Aortic Stenosis with small aortic Annulus. (소 대동맥 판막륜을 가진 대동맥판막 협착증 치험 1례 보고)

  • 권오춘
    • Journal of Chest Surgery
    • /
    • v.18 no.4
    • /
    • pp.663-666
    • /
    • 1985
  • Whatever a surgeon choose aortic prosthesis in aortic stenosis, it will always provoke some degree of obstruction to flow due to its smaller effective orifice area to tissue annulus. Occasionally, we meet small aortic annulus to his or her body surface area in aortic valve replacement. The small annulus remains a problem in that both tissue and mechanical prosthesis have significant pressure gradients between LV and aorta in resting or exercising states. In these circumstances, diverse surgical procedures, such as tilting disc prosthesis, supraannular position of aortic prosthesis, and enlargement of aortic root [including aortoventriculoplasty, translocation of aortic valve, & double outlet of LV by valved conduit], were applied. We experienced one case of aortic stenosis with small aortic annulus. Systolic pressure gradients between LV & aorta were 90 mmHg. Diameter of annulus was 19 mm. So we performed patch enlargement of aortic root by Manouguian and AVR with St. Jude medical valve 23 mm.

  • PDF

A method for the determination of transient flow rates from pressure measurements (압력측정을 이용한 과도기유량의 결정방법에 관한 연구)

  • Lee, Seong-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3649-3654
    • /
    • 1996
  • A transient hydraulic flow rate computation scheme is described here so that the transient hydraulic flow rate can be determined using the dynamic pressure measurements at the ends of a straight flow line with a dynamic model of the hydraulic line. This method can be applied to determine the orifice ares of high response valve. Simulation results indicate that the method is relatively robust to realistic levels of uncertainties in the fluid properties.

Digital Simulation of a Pilot-type Relief Valve (유압용 파이롯트형 릴리프밸브의 시뮤레시숀 연구)

  • ;;Kim, Hyeun-Soo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.3 no.3
    • /
    • pp.104-115
    • /
    • 1979
  • The dynamic chracteristics of a two stage relief valve is studied theoretically and experimentally. The equations of motion of spools are derived and solved by digital compter simulation to find the stiability criteria.It is shown that the area of main spool head gives damping effect to the system and that the flow pressure-coefficient of the orifice in main spool is one of the most important parameters to determine stability and response. The experimental resuls are in good atreement with the theoretical results.

Analysis of Ratio Changing Characteristics of a Metal V-Belt CVT Adopting Primary Pressure Regulation (압력제어 방식 금속 벨트 CVT 변속특성 해석)

  • 최득환;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.179-187
    • /
    • 2001
  • In this paper, a primary pressure regulating type ratio control system is developed for a metal belt CVT, and the CVT ratio changing characteristics are investigated by simulation and experiment. The hydraulic part of the ratio control system has a simple structure with one 3-way spool valve as a main ratio control valve and one bleed type variable force solenoid as a pilot valve. The mathematical modelling of the CVT hydraulic system is derived by considering the CVT shift dynamics. Simulation results of CVT speed ratio and the primary pressure agree with the experimental results demonstrating the validity of the dynamic models. It is found from the simulation and experimental results that the response time of speed ratio and primary pressure can be shortened by increasing the ratio control valve port area, and the size of feedback orifice of ratio control valve gives a damping effect on the primary pressure oscillation.

  • PDF

an Analysis of the Variation on the Impedance Characteristic according to Effective Area of Globe Control Valve at Low Frequency Perturbation (저주파 압력섭동에서 글로브 제어밸브의 유효 단면적에 따른 임피던스 특성 변화 해석)

  • Park, Seungsoo;Yoon, Woongsup;ohm, Wonsuk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.718-723
    • /
    • 2017
  • In this paper, Analytical study is carried out on the impedance characteristics of the globe control valve, which is mainly used for thrust control in liquid rockets, according to the effective area at low frequency perturbation. The impedance tends to increase according to effective area and the cause of impedance characteristic change through flow field visualization is investigated. In the future, the information on the change in the impedance characteristics of the control valve can be used to obtain the impedance of the supply system and it can be utilized to predict pogo phenomenon as well as design accumulator and orifice to reduce the pogo phenomenon.

  • PDF

CFD Analysis on the Continuous and Variable Damping Characteristics of a Semi-Active Shock Absorber (반능동형 충격흡수기의 연속가변 감쇠특성에 대한 CFD 해석)

  • 윤준원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.101-108
    • /
    • 2004
  • Recently, a semi-active shock absorber has been taking interest because of its low cost and simple structure than the active one. CFD analysis has been conducted to investigate the continuous and variable damping characteristics of the semi-active shock absorber. Also, the flow resistance characteristics of a spool valve has been examined to identify individual parameters(namely, exponent and discharge coefficient) of pressure-flow rate relation needed for the accurate valve modeling. The flow field in the damping valve was simulated using the commercial code, CFX-5.3. The numerical results showed reasonable agreement with the experimental outputs. The pressure distribution with the variation of spool opening length and volume flow rate were discussed in detail. And the continuous and variable damping performance was found clearly. The individual parameters of spool valve were obtained as a function of orifice area. The exponent and discharge coefficient were fitted in with the first and the third polynomial respectively.

A Study on Flow Rate Characteristic and Dynamic Performance on Diaphragm Solenoid Valve (다이어프램형 밸브의 유량특성과 동적성능에 관한 연구)

  • Jeong, C.S.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.10 no.3
    • /
    • pp.27-33
    • /
    • 2013
  • Solenoid valve has used in various industrial field extensively. A solenoid valve has different size, shape and method of operation accordantly to industrial field. Many researchers study on kinds of solenoid valve such as flow rate, dynamic, magnetic field, valve shape and operating method. But the flow rate characteristic and dynamic response time performance on the diaphragm valve are not studied. This paper describes the flow rate characteristic and dynamic response time performance on the diaphragm valve. At first, the diaphragm valve is simulated in AMESim simulation tool. AMESim model found that an effect of valve performance depends on parameter. The parameter is the diaphragm orifice area. And the performance test bench confirms the effect in this parameter. Finally, it finds out the flow rate characteristic and dynamic response time performance on the diaphragm valve.

Dynamic Characteristics Analysis for Optimal Design of Flow Divider Valve (Flow Divider Valve의 최적설계를 위한 동특성 해석)

  • Hwang, Tae-Yeong;Park, Tae-Jo
    • 연구논문집
    • /
    • s.29
    • /
    • pp.123-130
    • /
    • 1999
  • Flow divider valve, a kind of hydraulic control valve to divide the flow from one input line to two output line uniformly, should be able to keep the constant flow to output lines despite of the change load or supply pressure. Having 5-10% flow diving error in commercial hydraulic products is one of main source of the accumulated error caused hydraulic system problem and demands the development of flow divider valve to control flow more accurately, In this paper, the dynamic characteristics of flow divider valve are investigated by the numerical estimation of the spool motion considered the external supply force. The optimum design of flow divider valve are proposed to reduce the flow diving error. For the dynamic characteristics analysis, the change of sectional area of fixed and variable orifice, and spool are studied when the input signal is accepted to a constant load.

  • PDF