• Title/Summary/Keyword: Valve Dynamics

Search Result 212, Processing Time 0.026 seconds

Analysis of Ratio Changing Characteristics of a Metal V-Belt CVT Adopting Primary Pressure Regulation (압력제어 방식 금속 벨트 CVT 변속특성 해석)

  • 최득환;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.179-187
    • /
    • 2001
  • In this paper, a primary pressure regulating type ratio control system is developed for a metal belt CVT, and the CVT ratio changing characteristics are investigated by simulation and experiment. The hydraulic part of the ratio control system has a simple structure with one 3-way spool valve as a main ratio control valve and one bleed type variable force solenoid as a pilot valve. The mathematical modelling of the CVT hydraulic system is derived by considering the CVT shift dynamics. Simulation results of CVT speed ratio and the primary pressure agree with the experimental results demonstrating the validity of the dynamic models. It is found from the simulation and experimental results that the response time of speed ratio and primary pressure can be shortened by increasing the ratio control valve port area, and the size of feedback orifice of ratio control valve gives a damping effect on the primary pressure oscillation.

  • PDF

Lubrication Analysis of Hydraulic Spool Valve with Groove Cross Sectional Shapes (Groove 단면형상에 따른 유압 Spool Valve의 윤활해석)

  • Park, Tae-Jo;Hwang, Yun-Geon
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.13-19
    • /
    • 2009
  • The spools in most hydraulic spool type control valve have several circumferential grooves to pre-vent well known hydraulic locking problems which result in high friction force and excessive wear. In this paper, a commercial computational fluid dynamics (CFD) code, FLUENT is used to investigate the flow and lubrication characteristics of grooved hydraulic spool valve. The stream lines and pressure distributions are obtained for various groove cross sectional shapes and film thicknesses. The stream lines are highly affected by groove cross sectional shape but pressure distributions mainly depend on the film shape and its magnitude. Therefore the numerical method adopted in this paper and results can be use in designing of various grooved spool valve.

A Study on the Phase Bandwidth Frequency of a Directional Control Valve Based on the Hydraulic Line Pressure (배관 압력을 이용한 방향제어밸브 위상각 대역폭 주파수 측정에 관한 연구)

  • Kim, Sungdong;Lee, Jung-eun;Shin, Daeyoung
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.1-10
    • /
    • 2018
  • Spool displacement of a direction control valve is the standard signal to measure the bandwidth frequency of the direction control valve. When the spool displacement signal is not available, it is suggested in this study to use the metering hydraulic line as an alternative way to measure - 90 degree phase bandwidth frequency of the hydraulic direction control valve. Dynamics of the hydraulic line is composed of inertia, capacitance, and friction effects. The effect of oil inertia is dominant in common hydraulic line dynamics and the line dynamics is close to a derivative action in a range of high frequency; such as a range of bandwidth frequency of common directional control valves. Phase difference between spool displacement and line load pressure is nearly constant as a valve close to 90 degree. If phase difference is compensated from the phase between valve input and pressure, compensated phase may be almost same as the phase of spool displacement that is a standard signal to measure phase bandwidth frequency of the directional control valve. A series of experiments were conducted to examine the possibility of using line pressure in to measure phase bandwidth frequency of a directional control valve. Phase bandwidth frequency could be measured with relatively high precision based on metering hydraulic line technique and it reveals consistent results even when valve input, oil temperature, and supply pressure change.

A Study on the Design of Electromagnetic Valve Actuator for VVT Engine

  • Park, Seung-hun;Kim, Dojoong;Byungohk Rhee;Jaisuk Yoo;Lee, Jonghwa
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.357-369
    • /
    • 2003
  • Electromagnetic valve (EMV) actuation system is a new technology for improving fuel efficiency and at the same time reducing omissions in internal combustion engines. It can provide more flexibility in valve event control compared with conventional variable valve actuation devices. The electromagnetic valve actuator must be designed by taking the operating conditions and engine geometry limits of the internal combustion engine into account. To help develop a simple design method, this paper presents a procedure for determine the basic design parameters and dimensions of the actuator from the relations of the valve dynamics, electromagnetic circuit and thermal loading condition based on the lumped method. To verify the accuracy of the lumped method analysis, experimental study is also carried out on a prototype actuator. It is found that there is a relatively good agreement between the experimental data and the results of the proposed design procedure. Through the whole speed range, the actuator maintains proper performances in valve timing and event control.

Dynamic Behavior Analysis of the Heart Valve Prostheses Considering Squeeze Film Effect During Closing Phase (스퀴즈필름효과를 고려한 인공심장밸브의 닫힘시 동적거동 해석)

  • 천길정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.443-450
    • /
    • 1995
  • An analysis of the dynamics of a mechanical monoleaflet heart valve prosthesis in the closing phase is presented. Employing the moment equilibrium principles on the occluder motion and the squeeze film dynamics of the fluid between the occluder and the guiding strut at the instant of impact, the velocity of the occluder tip and the impact force were computed. The dynamics of fluid being squeezed between the occluder and the guiding struts is accounted for by Reynold's equation. The effect of the fluid being squeezed between the occluder and the guiding strut was to reduce the velocity of the occluder tip at the instant of valve closure as well as dampen the fluttering of the occluder before coming to rest in the fully closed position. The squeeze film fluid pressure changed rapidly from a high positive value to a relatively large negative value in less than 1 msec. The results of this study may be extended for the analysis of cavitation inception, mechanical stresses on the formed elements and valve components as well as to estimate the endurance limits of the prosthetic valves.

A Study on the Characteristics of Flow in the Metal Touch Ball Valve according to the Opening degree (볼밸브의 개폐각도에 따른 유동특성 분석)

  • An, Tae-Won;Han, Geun-Jo;Han, Dong-Seop;Lee, Seong-Wook
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.175-178
    • /
    • 2007
  • Valves has been used widely in various industries. There are many purposes for valve usage in a piping system. One of them is to control the flow rate. For a design of ball valves, it is important to know the characteristics of flows inside a ball valve. In this study, the computation fluid dynamics were conducted to observe flow velocity, flow coefficient and pressure distribution using CFX 10 according to the valve angles and uniform incoming velocity.

  • PDF

Design and Computational Fluid Dynamics of Pressure Reducing Valve (감압밸브의 설계 및 유동해석)

  • Lee, Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.7
    • /
    • pp.2853-2857
    • /
    • 2012
  • In this paper, 3-dimensional designing program, Solidwork was used in designing in order to investigate structure and characteristics of a pressure reducing valve which was used as an apparatus for keeping regulated pressure of water supply equipment system and also 2-dimensional drawing was made to manufacture a pressure reducing valve in the field.

Numerical Analysis for Valve Train Dynamics of an Internal Combustion Engine (내연기관 밸브 트레인 동역학의 수치해석)

  • 이기수;김동우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.31-39
    • /
    • 2003
  • Numerical analysis for valve train dynamics of an internal combustion engine is presented. The components of the valve train are modeled by finite element techniques, and the dynamic contacts between the components are analyzed by the solution strategies of differential algebraic equations. Also an iterative scheme similar to the augmented Lagrange multiplier method is employed to enforce the contact constraints. It is shown that the contact and separation between the components of the valve train can be computed by the finite element techniques, and the numerical examples are presented to demonstrate the efficiency of the solution.

A Study on the Flow Characteristics of Reed Valve with Variable Geometric Variations for Cryogenic Linear Expander (극저온 선형 팽창기용 리드밸브의 기하학적 형상변화에 따른 유동 특성 연구)

  • Jeong, Eun A;Kim, Ji U;Yeom, Han Kil;Yun, So Nam
    • Journal of Drive and Control
    • /
    • v.12 no.4
    • /
    • pp.48-53
    • /
    • 2015
  • This paper deals with the flow characteristics of a reed valve analyzed using computational dynamics(CFD) for optimal design. The seat sizes of the valve are modeled asØ6[mm] and Ø8[mm] to compare the flow characteristics. The inlet boundary condition is entered at 10[kPa], 15[kPa], 20[kPa], and 30[kPa] and the outlet boundary condition is set to the atmospheric pressure. The flow coefficient(C) and pressure loss coefficient(K) are calculated from the results of flow analysis. From the analysis results, it was confirmed that the flow coefficient of a reed valve having a seat size of Ø6[mm] is greater than that having a seat size of Ø8[mm], and the coefficient of pressure loss of a valve with a seat size of Ø6[mm] is lower than the Ø8[mm] size valve.

Computer Simulation and Shape Design Sensitivity Analysis of the Valve inside the Reciprocal Compressor using Finite Element Model (유한 요소 모델을 이용한 왕복동식 압축기 밸브의 거동 해석 및 형상 설계 민감도 해석)

  • 이제원;왕세명;주재만;박승일;이성태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.796-801
    • /
    • 2002
  • The goal of this research is the shape design of the valve using a computer simulation. For an analysis a basic mathematical model describing compression cycle is considered as consisting of five sets of coupled equations. These are the volume equation (kinematics), valve dynamic equation (dynamics), ideal gas equation (thermodynamics), Bernoulli equation (fluid dynamics), and dynamic equation of fluid particle based on Helmholtz equation (acoustics). Valve motion is made by the superposition of free vibration modes obtained by the finite element method. That is, the eigenvalues and eigenvectors are the sufficient modeling factors fur the valve in the simulation program. Thus, to design a shape of the valve, shape design sensitivity through chain-ruled derivatives is considered from two sensitivity coefficients, one is the design sensitivity of the capability of compressor with respect to the eigenvalues of the valve, and the other is the design sensitivity of the eigenvalue with respect to the shape change of the valve. In this research, the continuum design sensitivity analysis concepts are used for the latter.

  • PDF