• Title/Summary/Keyword: Valve Design

Search Result 1,167, Processing Time 0.026 seconds

Design and Characteristics of cryogenic ball valve (초저온 볼 밸브 설계 및 특성)

  • Kim, Dong-Soo;Kim, Myoung-Sub
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.666-671
    • /
    • 2007
  • To acquire the safety along with durability of mechanical machinery products, we should consider the structural mechanics such as stress, deformation and dynamic vibration characteristics and identify those important aspects in the stage of preliminary design engineering. This cryogenic ball valve is used to transfer the liquified natural gas which temperature is $-196^{\circ}C$, supplied pressure is $168kg/cm^2$. For the cryogenic ball valve, the assurance of structural integrity and operability are essential to meet not only normal, abnormal loading conditions but also functionality during a seismic event. In this thesis, analytical approach and results using finite element analysis and computational method are herein presented to evaluate the aspects of structural integrity along with operability of cryogenic ball valve. In this study, we designed the high pressure cryogenic ball valve that accomplishes zero leakage by elastic seal at normal temperature and metal seal at high temperature.

  • PDF

A Study on Structural Improvement of the Swashplate Axial Piston Pump Valve Block (1) (사판 식 축 피스톤 펌프 밸브블록의 구조개선에 관한 연구(1))

  • Kim, Jeong-Hwa;Shin, Mi-Jung;Kim, Myung-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.69-75
    • /
    • 2018
  • This study aims to provide ways to achieve structural improvements of the internal flow path of the discharge plenum of a swash plate piston pump valve block vulnerable to cracks. This paper corresponds to Part I, which consists of a structural analysis of the valve block, identification of the stress distribution and stress raisers, and creation of a Simple Model of the valve block to review the optimal design. Structural analysis was performed by assigning the same conditions as those found in the valve block model, and the design was reviewed by examining three different design improvement plans for the internal flow path of the discharge plenum.

Optimization of Butterfly Valve's Disc Using the DACE Model Based on CAE (CAE에 기반한 DACE 모델을 이용한 버터플라이밸브 디스크의 최적설계)

  • Park Young-Chul;Kang Jung-Ho;Lee Jong-Moon;Kang Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.3 s.70
    • /
    • pp.96-102
    • /
    • 2006
  • The butterfly valve has been used to control the switch and flux of fluid. While research about the characteristics of butterfly valve fluid have been done, study of the optimum design, considering structural safety, must keep pace with it. Thus, a method is proposed for an optimum butterfly valve. Initially, the stability of the butterfly valve, using FEM and CFD, is evaluated, and a variable is selected using the initial analysis results. Also, the shape optimization design is accomplished using the DACE model. In terms of research results, the experiment satisfied the objective and limitation functions.

Analysis Model Development and Sensitivity Analysis on Design Parameters of the Neutral Valve for HST (HST 중립밸브의 해석모델 개발 및 설계변수 민감도 분석)

  • Kim, D.M.;Jang, J.S.;Kim, S.C.
    • Journal of Drive and Control
    • /
    • v.11 no.3
    • /
    • pp.41-46
    • /
    • 2014
  • The neutral valve for controlling the HST is one of the important valves for the vehicle control. Neutral valve takes a role of blocking or transmitting power to the vehicle. The operating principle of the neutral valve was developed through the analysis model. We also investigated the logical validity by analyzing the results of the analysis model. The analysis model was developed by using SimulationX witch is commercial software. The number of holes in the piston was selected as a variable initial compression of the spring, and the magnitude of the pressure pulsations and the diameter of the orifice for the sensitivity analysis were performed to design sensitivity analysis of the neutral valve.

Design of Network Controller for Proportional Flow Control Solenoid Valve (비례유량제어밸브 네트워크 제어기 설계)

  • Jung, G.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.4
    • /
    • pp.17-23
    • /
    • 2011
  • Proportional control solenoid is a type of modulating valve that can continuously control the valve position with magnetic force of solenoid. Recent microcontroller based digital servocontroller for proportional valve is being developed toward the smart valve with additional features such as enhanced control algorithm for finer process and intelligent on-board diagnosis for maintenance. In this paper, development of servocontroller network control with CAN bus which is free from problems of security and network traffic jam is presented. Design of network control system includes modes of communication between master and slave, assignment of 29bit message identifier and message objects, transaction of communication sequence, etc. Monitoring function and control experiments for remote valve through CAN network prove the extended function of smart valve control system.

Characteristic Analysis and Experiment of Pneumatic Servo Valve (공기압 서보밸브 특성해석 및 실험)

  • Kim, Dong-Soo;Lee, Won-Hee;Choi, Byung-Oh
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.967-973
    • /
    • 2004
  • Electro-pneumatic servo valve is an electro-mechanical device which converts electric signals into a proper pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristics, no air leakage at a null point, and can be fabricated at a low-cost. The first objective of this research is to design and to fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In order to design the mechanism of the servo valve optimally, the flow inside the valve depending upon the position of spool was analyzed variously, and on the basis of such analysis results, the valve mechanism, which was formed by combination of the spool and the sleeve, was designed and manufactured. And a tester for conducting an overall performance test was designed and manufactured, and as a result of conducting the flow rate test, the pressure test and the frequency test on the developed pneumatic servo valve.

  • PDF

Design and Performance Test of Vacuum Control Valve for Electron Beam Lithography (전자빔 가공기의 진공제어 밸브설계 및 특성평가)

  • Lee Chan-Hong;Lee Hu-Sang
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.777-780
    • /
    • 2005
  • The high vacuum in a electron beam lithography is basic condition, because electron beam vanish by collision with air molecules in generally atmosphere. To make high vacuum state, the vacuum control valve is essential. Most vacuum control valve are manual units. So, user of manual vacuum valve must have understanding vacuum process to change from low vacuum to high vacuum state. The user of electron beam lithography are troubled with operation of manual vacuum valve, in case the vacuum chamber is frequently open. In this paper, the design and performance test of auto vacuum control valve for electron beam lithography are described. With the auto vacuum control valve, the high vacuum level can reach 2.8E-5 Torr.

  • PDF

Development of Direct Drive type Pneumatic Servo Valve (직동식 공기압 서보밸브 개발)

  • Kim, Dong-Su;Lee, Won-Hui;Choe, Byeong-O
    • 연구논문집
    • /
    • s.34
    • /
    • pp.69-77
    • /
    • 2004
  • Electro-pneumatic servo valve is an electro-mechanical device which converts electric signals into a proper pneumatic flow rate or pressure. In order to improve the overall performance of pneumatic servo systems, electro-pneumatic servo valves are required, which have fast dynamic characteristics, no air leakage at a null point, and can be fabricated at a low-cost. The objective of this research is to design and to fabricate a new electro-pneumatic servo valve which satisfies the above-mentioned requirements. In order to design the mechanism of the servo valve optimally, the flow inside the valve depending upon the position of spool was analyzed variously, and on the basis of such analysis results, the valve mechanism, which was formed by combination of the spool and the sleeve, was designed and manufactured. Further, the performance of pneumatic servo valve has been verified through an overall performance test on the developed product.

  • PDF

Controller Design for a Nozzle-flapper Type Servo Valve with Electric Position Sensor

  • Istanto, Iwan;Lee, Ill-yeong;Huh, Jun-young;Lee, Hyun-cheol
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.29-35
    • /
    • 2019
  • The control performance of hydraulic systems is basically influenced by the performance of electrohydraulic servo valve incorporated in a hydraulic control system. In this study, a control design was proposed to improve the control performance of a servo valve with a non-contact eddy current type position sensor. A mathematical model for the valve was obtained through an experimental identification process. A PI-D control together with a feedforward (FF) control was applied to the valve. To further improve the dynamic response of the servo valve, an input shaping filter (ISF) was incorporated into the valve control system. Finally, the effectiveness of the proposed control system was verified experimentally.

Optimum design of direct spring loaded pressure relief valve in water distribution system using multi-objective genetic algorithm (다목적 유전자 알고리즘을 이용한 상수관망에서 스프링 서지 완화 밸브의 최적화)

  • Kim, Hyunjun;Baek, Dawon;Kim, Sanghyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.115-122
    • /
    • 2018
  • Direct spring loaded pressure relief valve(DSLPRV) is a safety valve to relax surge pressure of the pipeline system. DSLPRV is one of widely used safety valves for its simplicity and efficiency. However, instability of the DSLPRV can caused by various reasons such as insufficient valve volume, natural vibration of the spring, etc. In order to improve reliability of DSLPRV, proper selection of design factors of DSLPRV is important. In this study, methodology for selecting design factors for DSLPRV was proposed. Dynamics of the DSLPRV disk was integrated into conventional 1D surge pressure analysis. Multi-objective genetic algorithm was also used to search optimum design factors for DSLPRV.