• Title/Summary/Keyword: Valve Design

검색결과 1,167건 처리시간 0.024초

IMV 비례 유량제어밸브 정특성 선형해석 (Liner Analysis of IMV Proportional Flow Control Valve Static Characteristics)

  • 정규홍
    • 드라이브 ㆍ 컨트롤
    • /
    • 제16권4호
    • /
    • pp.56-64
    • /
    • 2019
  • Recently, as the environmental regulation for earth moving equipment has been tightened, advanced systems using electronic control have been introduced for energy savings. An IMV(Independent Metering Valve), which consists of four 2-way valves, is one of the electro-hydraulic control systems that provides more flexible controllability and potential for energy savings in excavators, when compared to the conventional 4-way spool valve system. To fully realize an IMV, a two-stage bi-directional flow control valve which can regulate the large amount of flow in both directions, should be developed in advance. A simple design that allows proportional flow control to apply the pilot pressure from the current-controlled solenoid to the spring loaded flow control spool and thus valve displacement, is proportional to the solenoid current. However, this open-loop type valve is vulnerable to flow force which directly affects the valve displacement. Force feedback servo of which the position loop is closed by the feedback spring which interconnects the solenoid valve and flow control spool, could compensate for the flow force. In this study, linearity for the solenoid current input and robustness against load pressure disturbance is investigated by linear analysis of the static nonlinear equations for the IMV proportional flow control valve with feedback spring. Gains of the linear system confirm the performance improvement with the feedback spring design.

Flow Divider Valve의 최적설계를 위한 동특성 해석 (Dynamic Characteristics Analysis for Optimal Design of Flow Divider Valve)

  • 황태영;박태조
    • 연구논문집
    • /
    • 통권29호
    • /
    • pp.123-130
    • /
    • 1999
  • Flow divider valve는 한 개의 공급라인에서 두 개 이상의 출력라인으로 유압유를 일정비율로 분배하는 유압제어밸브로서 하중압력이나 공급압력 등에 관계없이 항상 일정비율의 유량분배가 가능해야 한다. 현재 상용제품의 유량분할 정확도는 90~95% 수준이며, 이러한 유량분할오차(Flow dividing error)는 유압시스템에 누적오차로 작용하여 많은 문제점을 야기시키고 있어 보다 고정밀 유량제어가 가능한 Flow divider valve 개발이 요구된다. 본 연구에서는 외력을 고려한 스푸울의 거동을 수치적으로 정확하게 조사하여 Flow divider valve의 동특성을 규명함과 동시에 유량분할 오차를 감소시키는 최적설계방안을 제시하고자 한다. 동특성 해석은 일정한 하중저항을 입력신호로 작용하는 경우에 대해서 제시하였으며, 이때의 고정오리피스와 가변오리피스의 단면적 및 스푸울의 단면적 변화에 따른 동특성의 변화를 조사하였다.

  • PDF

Thermo-mechanical stress analysis of feed-water valves in nuclear power plants

  • Li, Wen-qing;Zhao, Lei;Yue, Yang;Wu, Jia-yi;Jin, Zhi-jiang;Qian, Jin-yuan
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.849-859
    • /
    • 2022
  • Feed-water valves (FWVs) are used to regulate the flow rate of water entering steam generators, which are very important devices in nuclear power plants. Due to the working environment of relatively high pressure and temperature, there is strength failure problem of valve body in some cases. Based on the thermo-fluid-solid coupling model, the valve body stress of the feed-water valve in the opening process is investigated. The flow field characteristics inside the valve and temperature change of the valve body with time are studied. The stress analysis of the valve body is carried out considering mechanical stress and thermal stress comprehensively. The results show that the area with relatively high-velocity area moves gradually from the bottom of the cross section to the top of the cross section with the increase of the opening degree. The whole valve body reaches the same temperature of 250 ℃ at the time of 1894 s. The maximum stress of the valve body meets the design requirements by stress assessment. This work can be referred for the design of FWVs and other similar valves.

보일러 급수펌프용 1500lb 고차압 제어밸브 국산화 개발에 관한 연구 (A Study on the Localization of 1500lb High-Pressure Drop Control Valve for Boiler Feedwater Pump)

  • 이권일;장훈;이치우
    • 한국기계가공학회지
    • /
    • 제21권8호
    • /
    • pp.19-24
    • /
    • 2022
  • We developed a prototype from the design of a trim, which is the most important in the localization development of a 1500 Ib high-differential pressure-control valve used for boiler feedwater, and measured the flow coefficient, the most basic design data for valves. The following conclusions were drawn. The comparison of the design values of the flow coefficients for the existing X-trim and the multicore trim designed for localization development showed that they were almost identical, and the X-trim value was slightly lower. The comparison of the X-trim and multicore trim based on the valve flow coefficient test showed that they were generally similar, indicating no problem with the design. In the future, we plan to compare and analyze the flow paths for the X-trim and multicore trim via flow analysis.

DMU(Digital Mockup) 기법을 적용한 LNG 선박용 극저온 버터플라이 밸브 설계의 우수성 검증 (3D Digital Mockup Application of Cryogenic Butterfly Valve, LNG Carrier)

  • 이동훈;김덕은;김수영;박기영
    • 대한조선학회논문집
    • /
    • 제43권5호
    • /
    • pp.611-618
    • /
    • 2006
  • Recently, cryogenic butterfly valves for LNG carriers are actively developed by ship equipment companies. The dual core structure unlike usual butterfly valve has both translation and gyration motions of the disk of the valve assembly. Especially, the ship equipment companies can not have overcome 2D design method; in addition, even though 2 years of development has passed, the drawing cannot be secured. In this research, for the cryogenic butterfly valves and the product design, 3D design method was introduced and DMU(Digital Mockup) was applied to complement the problems in 2D design and investigate application possibility of 3D design method.

개폐각도에 따른 PFA 라이닝 볼밸브의 유동특성 및 유랑계수 전산해석 (CFD Analysis on the Flow Characteristics with Flow Coefficient in a PFA Lined Ball Valve for Different Opening Degrees)

  • 전홍필;김동열;이종철
    • 한국유체기계학회 논문집
    • /
    • 제17권4호
    • /
    • pp.76-80
    • /
    • 2014
  • PFA fluoropolymer lined technology revolutionized ball valve development and design decades ago and continues to be pivotal for many products and valve solutions in diverse industries and applications, such as chemical process, semiconductor/LCD manufacturing processes, pharmaceutical and others. Because of the extreme operating conditions such as high-temperature (${\sim}120^{\circ}C$) and high-pressure (~10 bar), the reliability of the valve is very important for minimizing in-line leakage and fugitive emissions of strong corrosive chemicals (hydrochloric acid, hydrofluoric acid, nitric acid, etc.) transported through the lines. In this study, we investigated the flow characteristics with flow coefficient in a PFA lined ball valve for different opening degrees using CFD analyses. The results should be the guidance for a new PFA lined ball valve design that will incorporate all the acclaimed and demonstrated benefits of the current design approaches.

SimulationX를 이용한 Remote Control Valve의 특성 분석에 관한 연구 (A Study on the Characteristic of Remote Control Valve Using Simulation X)

  • 정유성;정원지;이산성;이정민;최경신
    • 한국기계가공학회지
    • /
    • 제16권5호
    • /
    • pp.78-84
    • /
    • 2017
  • Compared to other types of power, hydraulic energy is the most commonly used for heavy vehicles and ships because it has fewer location and space constraints, and its controllability can be maintained even under adverse conditions. Operators have controlled a main control valve of ship winches by pushing or pulling the lever, which is directly connected to the spool. However, because of the spatial arrangement, the importance of remote control valves has emerged. In this paper, experiments of the hysteresis characteristics were performed by analyzing the remote-control valve using a valve tester and RA2300. The validity was verified by comparing with the analytical model using SimulationX as the hydraulic analysis program. This study examined the effects of the spool's notch (Non, End-mill, and Spherical) and the effects of stiffness and pre-load of the spool spring on Spool stroke, open area, and hysteresis characteristics. It is considered possible to reduce the cost and the, trial and error process in designing remote-control valves in the future.

밸브시험기의 구조개선 및 신제품 개발 (Structure Improvement and New Product Development of Valve Tester)

  • 이종선
    • 수산해양교육연구
    • /
    • 제28권2호
    • /
    • pp.350-355
    • /
    • 2016
  • This research aims to evaluated the structure improvement and new product development of valve tester. A valve tester was redesigned for structure improvement and new product development using 3-D design program CATIA. In addition, behavior analysis was conducted on the modeled valve tester using the ANSYS program. The total deformation, stress and strain were obtained by the internal pressure change. This result was applied to the new product development of valve tester.

연성해석과 통계적 방법을 이용한 Butterfly Valve의 다목적 최적설계 (Multi-objective Optimization of Butterfly Valve using the Coupled-Field Analysis and the Statistical Method)

  • 배인환;이동화;박영철
    • 한국정밀공학회지
    • /
    • 제21권9호
    • /
    • pp.127-134
    • /
    • 2004
  • It is difficult to have the existing structural optimization using coupled field analysis from CFD to structure analysis when the structure is influenced of fluid. Therefore in an initial model of this study after doing parameter design from the background of shape using topology optimization. and it is making a approximation formula using by the CFD-structure coupled-field analysis and design of experiment. By using this result, we conducted multi-objective optimization. We could confirm efficiency of stochastic method applicable in the scene of structure reliability design to be needed multi-objective optimization. And we presented a way of design that could overcome the time and space restriction in structural design such as the butterfly valve with the less experiment.

An Optimal Design of a two stage relief valve by Genetic Algorithm

  • Kim, seungwoo;doowan Im;Kyungkwan Ahn;Soonyong Yang;Lee, Byungryong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.66.2-66
    • /
    • 2002
  • In this study, a novel systematic design procedure by Genetic Algorithm of a two stage relief valve is proposed. First of all, a mathematical model describing the dynamics of a balanced piston type relief valve has been derived. Governing equations such as dynamic equations for the main spool and the pilot spool and flow equations for each orifice are established. The mathematical model is verified by comparing the results of simulation with that of experiments. Furthermore, influences of the parameters on the dynamic characteristics of a relief valve have been investigated by simulation of the proposed model. Major design parameters on the valve response are determin...

  • PDF