The Journal of Asian Finance, Economics and Business
/
제8권10호
/
pp.19-28
/
2021
The present study aims to evolve the value cycle of e-business through value co-creation during the Coronavirus pandemic. The population of the study is experts consisting of university professors in the fields of marketing management, e-commerce, and managers of organizations and companies in Iran. Using the snowball sampling method, 50 of them were selected as the sample. This study employs the factor analysis method and structural equation modeling (SEM) approach for identification of the factors. The findings of this study reveal that 10 factors affect the evolution of the value chain into the value cycle, including customer relationship management, e-literacy, value co-creation, e-readiness, and integrated value creation, the logic of service dominance, shared value creation, virtual culture, e-trust, and network economics. Despite the difficulties that COVID-19 has created for businesses worldwide, the evolution of the e-business value cycle through value co-creation in the Coronavirus pandemic can be considered as a positive aspect of the pandemic. In fact, with more pandemics and more customers turning to e-businesses due to the co-creation of customer value, e-businesses can cover their weaknesses and improve their strengths by engaging customers and receiving their feedback, thus transforming their value chain into the value cycle.
The purpose of this study was to find the optimal arrangement of FPSO equipment in a module while considering the economic value and fire risk. We estimated the economic value using the pipe connections and pump installation cost in an HP (high pressure) gas compression module. The equipment risks were also analyzed using fire scenarios based on historical data. To consider the wind effect during a fire accident, fuzzy modeling was applied to improve the accuracy of the analysis. The objective functions consisted of the economic value and fire risk, and the constraints were the equipment maintenance and weight balance of the module. We generated a Pareto-optimal front group using a multi-objective GA (genetic algorithm) and suggested an equipment arrangement method that included the opinions of the designer.
To develop the model for prediction of potato late blight progress, the relationship between severity index of potato late blight transformed by the logit and Gompit transformation function and cumulative severity value (CSV) processing weather data during growing period in Taegwallyeong alpine area, 1975 to 1992 were examined. When logistic model and Gompertz model were compared by determining goodness of fit for progressive degree of late blight using CSV as independent variable, the coefficients of determination were higher as 0.742 in the logistic model than 0.680 in the Gompertz model. Parameters in logistic model were composed of progressive rate and initial value of logistic model. Initial value was calculated in -3.664. The progressive rate of potato late blight was 0.137 in cv. Superior, 0.136 in cv. Irish Cobbler, and 0.070 in cv. Jopung without fungicide sprays. According to in crease of the number of spray times the progressive rate was lowered, was 0.020 in cv. Superior under the conventional program of fungicide sprays, 10 times sprays during cropping season. Equation of progressive rate, b1=0.0088 ACSV-0.033 (R2=0.976), was written by examining the relationship between the parameters of progressive rate of late blight and the average CSV (ACSV) quantifing weather information. By estimating parameters of logistic function, model able to describe the late blight progress of potato, cv. Superior was formulated in Y=4/(1+39.0·exp((0.0088 ACSV-0.033)·CSV).
Purpose: It suggests that making a policy and strategies in a way of AI and its impact of commercialization on economic efficiency, social custom ethics. Research design, data, and methodology: The paper has analyzed the data based on the proposed model when derived as AI vs. FI job, etc. It is very different for each professional evaluation, which is artificial intelligence or robot job. One concept case was selected as a substitute job, with a relatively low level of occupation ability, such as direct labors, easily replaced. By the induction data has resulted in modeling. Results: The paper suggests that AI at high level become something how to make real decisions on ethical value modeling. Through physical simulation with the deduction data, it can be tuned to design and control what has not been solved, from human senses to climate. Conclusion: For the exploiting of new AI decision-making jobs in markets, the deduction data is possible to prove to AI's Decision-making that the percentage who can easily have different leadership as is different for each person. what is generated by some information silos may be applied to occupation societies. The empirical results indicate the deduction data that if AI determines ethical decisions (VC) for that modifications, it may replace future jobs.
This paper introduces a systems engineering approach to reliability centered maintenance to address some of the weaknesses. Reliability centered maintenance is a systematic, disciplined process that produces an efficient equipment management strategy to reduce the probability of failure [1]. The study identifies the need for RCM, requirements analysis, design for RCM implementation. Value modeling is used to evaluate the value measures of RCM. The system boundary for the study has been selected as containment spray pump and its motor drive. Failure Mode and Criticality Effects analysis is applied to evaluate the failure modes while the logic tree diagram used to determine the optimum maintenance strategy. It is concluded that condition based maintenance tasks should be enhanced to reduce component degradation and thus improve reliability and availability of the component. It is recommended to apply time directed tasks to age related failures and failure finding tasks to hidden failures.
The stiffness of a structure is one of several structural signals that are useful indicators of the amount of damage that has been done to the structure. To accurately estimate the stiffness, an equation of motion containing a stiffness parameter must first be established by expansion as a linear series model, a Taylor series model, or a power series model. The model is then used in multivariate autoregressive modeling to estimate the structural stiffness and compare it to the theoretical value. Stiffness assessment for modeling purposes typically involves the use of one of three statistical model refinement approaches, one of which is the efficient Akaike information criterion (AIC) proposed in this paper. If a newly added component of the model results in a decrease in the AIC value, compared to the value obtained with the previously added component(s), it is statistically justifiable to retain this new component; otherwise, it should be removed. This model refinement process is repeated until all of the components of the model are shown to be statistically justifiable. In this study, this model refinement approach was compared with the two other commonly used refinement approaches: principal component analysis (PCA) and principal component regression (PCR) combined with the AIC. The results indicate that the proposed AIC approach produces more accurate structural stiffness estimates than the other two approaches.
본 논문에서는 기존의 영상분할에서 발생하는 초기값 배정문제와 영상분할 가능여부를 확인할 수 있는 방법에 대한 이론적 근거를 분석하고 제시한다. 본 논문의 앞 부분에서는 위상수학의 이론에 근거한 수학적 논증을 바탕으로 적절한 초기값 배정의 대한 위상적 근거와 방법론을 제시한다. 이어서 위상수학의 분리공리 이론에 근거하여 영상이 영역 분할되기 위한 최소의 위상조건을 확인하고 해당 조건을 이용하여 영상분할을 위해 사용된 모델의 유효성을 검증하는 방법론을 제시한다. 즉, 본 논문은 기존의 통계적 분석과 달리, 위상적 분석을 통해 영상 영역 분할의 수학적 근거를 제시한 것에 그 특징이 있다. 마지막으로 기존의 가우시안 랜덤 필드 모델 기반 영상 분할에 본 논문에서 제시한 이론과 방법론을 적용하여 가우시안 랜덤 필드 모델의 유효성을 확인한다.
In this paper, we studied about the extraction of the parameter and implementation of speechreading system to recognize the Korean 8 vowel. Face features are detected by amplifying, reducing the image value and making a comparison between the image value which is represented for various value in various color space. The eyes position, the nose position, the inner boundary of lip, the outer boundary of upper lip and the outer line of the tooth is found to the feature and using the analysis the area of inner lip, the hight and width of inner lip, the outer line length of the tooth rate about a inner mouth area and the distance between the nose and outer boundary of upper lip are used for the parameter. 2400 data are gathered and analyzed. Based on this analysis, the neural net is constructed and the recognition experiments are performed. In the experiment, 5 normal persons were sampled. The observational error between samples was corrected using normalization method. The experiment show very encouraging result about the usefulness of the parameter.
본 연구는 딥러닝을 이용한 흉부 X선 폐렴 영상에 대하여 정확하고 효율적인 의료영상의 자동진단을 위해서 가장 효율적인 학습률을 제시하고자 하였다. Inception V3 딥러닝 모델에 학습률을 0.1, 0.01, 0.001, 0.0001로 각각 설정한 후 3회 딥러닝 모델링을 수행하였다. 그리고 검증 모델링의 평균 정확도 및 손실 함수 값, Test 모델링의 Metric을 성능평가 지표로 설정하여 딥러닝 모델링의 수행 결과로 획득한 결과값의 3회 평균값으로 성능을 비교 평가하였다. 딥러닝 검증 모델링 성능평가 및 Test 모델링 Metric에 대한 성능평가의 결과, 학습률 0.001을 적용한 모델링이 가장 높은 정확도와 우수한 성능을 나타내었다. 이러한 이유로 본 논문에서는 딥러닝 모델을 이용한 흉부 X선 영상에 대한 폐렴 유무 분류 시 학습률을 0.001로 적용할 것을 권고한다. 그리고 본 논문에서 제시하는 학습률의 적용을 통한 딥러닝 모델링 시 흉부 X선 영상에 대한 폐렴 유무 분류에 대한 인력의 보조적인 역할을 수행할 수 있을 거라고 판단하였다. 향후 딥러닝을 이용한 폐렴 유무 진단 분류 연구가 계속해서 진행될 시, 본 논문의 논문 연구 내용은 기초자료로 활용될 수 있다고 여겨지며 나아가 인공지능을 활용한 의료영상 분류에 있어 효율적인 학습률 선택에 도움이 될 것으로 기대된다.
Purpose: This study explores the relationship between future time perspective and older consumers' masstige product consumption, specifically, their intention to purchase masstige brand products, with a focus on their motivational drives from an functional value and symbolic value perspective. Research design, data and methodology: Data were collected through an online questionnaire from 419 people aged 54 to 64 years in South Korea and the hypotheses were examined using structural equation modeling. Results: Our results indicated that middle-aged and older consumers who have expanded future time perspective have higher intention to purchase masstige brands and their functional value and symbolic value of masstige brands were found to mediate future time perspective and intention to purchase masstige brands. Conclusions: The findings offer insights into masstige brand consumption by older South Korean consumers that may be useful for both academics and marketers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.