• 제목/요약/키워드: Validation methods

검색결과 1,842건 처리시간 0.035초

미지정수 후보 타당성 검정 기법간의 비교 분석 (A Comparative Analysis of Performance of Ambiguity Validation Methods)

  • 고재영;신미영;한영훈;조득재
    • 한국항해항만학회지
    • /
    • 제39권1호
    • /
    • pp.15-21
    • /
    • 2015
  • GNSS를 이용한 정밀측위에서 미지정수 결정은 가장 중요한 과정이다. 정확한 미지정수를 추정하는 경우에는 수 mm에서 수 cm의 정밀한 측위결과를 가져오지만 부정확한 미지정수를 사용하는 경우에는 측위결과의 정확도와 정밀도를 보장할 수가 없다. 미지정수 결정은 IR(Integer Rounding), IB(Integer Bootstrapping), ILS(Integer Least Squares) 등의 기법을 기반으로 수행할 수 있다. 이중에서 ILS는 이론적, 실험적으로 가장 좋은 성능을 보여준다. 하지만 다른 기법들과 달리 ILS는 미지정수에 대한 후보를 검색하기 때문에 올바른 미지정수를 판단하기 위한 타당성 검정이 필요하다. 본 논문에서는 타당성 검정 기법간의 실험적인 비교 분석을 수행한다. 실험에는 타당성 검정 기법으로 자주 쓰이는 R-ratio, F-ratio, W-ratio가 사용되었다. 각 타당성 검정 기법의 성능을 정상동작, 검출, 미검출, 오검출로 나누어 평가하였다. 실험결과로 각 타당성 검정 기법의 장단점이 분명하게 나타났으며, 이를 통해 적용환경에 따라 기법이 선택되어야 함을 확인하였다.

A Comparative Study on Arrhenius-Type Constitutive Models with Regression Methods

  • Lee, Kyunghoon;Murugesan, Mohanraj;Lee, Seung-Min;Kang, Beom-Soo
    • 소성∙가공
    • /
    • 제26권1호
    • /
    • pp.18-27
    • /
    • 2017
  • A comparative study was performed on strain-compensated Arrhenius-type constitutive models established with two regression methods: polynomial regression and regression Kriging. For measurements at high temperatures, experimental data of 70Cr3Mo steel were adopted from previous research. An Arrhenius-type constitutive model necessitates strain compensation for material constants to account for strain effect. To associate the material constants with strain, we first evaluated them at a set of discrete strains, then capitalized on surrogate modeling to represent the material constants as a function of strain. As a result, disparate flow stress models were formed via the two different regression methods. The constructed constitutive models were examined systematically against measured flow stresses by validation methods. The predicted material constants were found to be quite accurate compared to the actual material constants. However, notable mismatches between measured and predicted flow stresses were revealed by the proposed validation techniques, which carry out validation with not the entire, but a single tensile test case.

통신케이블 차폐시험방법의 유효성 확인 및 측정불확도 추정 (Validation and Measurement Uncertainty Estimation in the Testing Method of Cable-harness Shielding Effectiveness)

  • 김종상;조남호
    • 한국컴퓨터정보학회논문지
    • /
    • 제7권1호
    • /
    • pp.8-19
    • /
    • 2002
  • 시험기관은 표준화되지 않은 시험방법. 해당기관이 설계/개발한 방법 등에 의한 시험을 수행할 경우 방법의 유효성이 확인되어야만 사용할 수 있으며, 또한 측정값에 대한 불확도(Uncertainty)의 추정이 요구되고 있다. 따라서 케이블-하네스의 EMI 차폐효과시험방법에 대한 측정정밀도를 통계적 분석 방법 에 의거 검토하여 유효성을 확인하는 방법을 제시하고 시험결과에 대한 측정불확도를 추정하는 방법을 제시하였다.

  • PDF

한국의 도구개발 간호연구에서의 타당도에 대한 고찰 (Validity of Instrument Development Research in Korean Nursing Research)

  • 이경희;신수진
    • 대한간호학회지
    • /
    • 제43권6호
    • /
    • pp.697-703
    • /
    • 2013
  • Purpose: This integrative review study was done to analyze methods used for validation studies in Korean nursing research. Methods: In this study, the literature on instrument development in nursing research from Research Information Sharing Service (RISS) and major nursing journal databases in Korea were examined. The MeSH search terms included 'nursing', 'instrument', 'instrument development', 'validation' and 189 articles were included in the review. Results: The most frequently reported validity type was content validity, followed by construct validity, and criterion validity. One third reported a single type of validity, and 15% of the studies demonstrated three kinds of validity at the same time. In about 40% of the studies, both content and construct validity were examined. Conclusion: The results of the study indicate that it is necessary to provide a wider variety of evidence to establish whether instruments are valid enough to use in nursing research.

Deformable image registration in radiation therapy

  • Oh, Seungjong;Kim, Siyong
    • Radiation Oncology Journal
    • /
    • 제35권2호
    • /
    • pp.101-111
    • /
    • 2017
  • The number of imaging data sets has significantly increased during radiation treatment after introducing a diverse range of advanced techniques into the field of radiation oncology. As a consequence, there have been many studies proposing meaningful applications of imaging data set use. These applications commonly require a method to align the data sets at a reference. Deformable image registration (DIR) is a process which satisfies this requirement by locally registering image data sets into a reference image set. DIR identifies the spatial correspondence in order to minimize the differences between two or among multiple sets of images. This article describes clinical applications, validation, and algorithms of DIR techniques. Applications of DIR in radiation treatment include dose accumulation, mathematical modeling, automatic segmentation, and functional imaging. Validation methods discussed are based on anatomical landmarks, physical phantoms, digital phantoms, and per application purpose. DIR algorithms are also briefly reviewed with respect to two algorithmic components: similarity index and deformation models.

A convenient approach for penalty parameter selection in robust lasso regression

  • Kim, Jongyoung;Lee, Seokho
    • Communications for Statistical Applications and Methods
    • /
    • 제24권6호
    • /
    • pp.651-662
    • /
    • 2017
  • We propose an alternative procedure to select penalty parameter in $L_1$ penalized robust regression. This procedure is based on marginalization of prior distribution over the penalty parameter. Thus, resulting objective function does not include the penalty parameter due to marginalizing it out. In addition, its estimating algorithm automatically chooses a penalty parameter using the previous estimate of regression coefficients. The proposed approach bypasses cross validation as well as saves computing time. Variable-wise penalization also performs best in prediction and variable selection perspectives. Numerical studies using simulation data demonstrate the performance of our proposals. The proposed methods are applied to Boston housing data. Through simulation study and real data application we demonstrate that our proposals are competitive to or much better than cross-validation in prediction, variable selection, and computing time perspectives.

QbD6시그마 프로세스를 통한 D-항원 정량 시험법의 유효성과 동등성에 관한 연구 (A Study on the Efficacy and Equivalence of D-antigen Quantitative Analysis through QbD6sigma Process)

  • 김강희;김현정
    • 품질경영학회지
    • /
    • 제50권4호
    • /
    • pp.831-842
    • /
    • 2022
  • Purpose: This study carried out the Quality by Design (QbD)6σ process to verify the effectiveness and equivalence of the finished D-antigen quantitative test method, and compared the OFAT-based method validation and test result acceptance criteria with the Analytical Quality by Design (AQbD)-based method validation and test method. This is a study on how to reduce the risk of delay in permit change by increasing the reliability of permit data in the existing method by statistically analyzing the results. Methods: With the QbD6σ process, the effectiveness and equivalence of the D-antigen quantitative test method were verified with the data of the existing test method and the new test method. Results: Method validation tests are performed based on AQbD. Critical Method Parameters are identified through risk assessment, and single/combined actions are verified by designing and performing tests for Critical Method Parameters (analysis of variance, full factorial design method). Method validation can be effectively accomplished with the QbD6σ process. Conclusion: The use of QbD6σ can be used to achieve satisfactory results for both pharmaceutical companies and regulators by using appropriate statistical analytical methods for method validation as required by regulatory agencies.

Cost Estimation and Validation based on Natural Language Requirement Specifications

  • So Young Moon;R. Young Chul Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권2호
    • /
    • pp.218-226
    • /
    • 2023
  • In Korea, we still use function point based cost estimations for software size and cost of a project. The current problem is that we make difficultly calculating function points with requirements and also have less accurate. That is, it is difficult for non-experts to analyze requirements and calculate function point values with them, and even experts often derive different function points. In addition, all stakeholders strongly make the validity and accuracy of the function point values of the project before /after the development is completed. There are methods for performing function point analysis using source code [1][2][3][4] and some researchers [5][6][7] attempt empirical verification of function points about the estimated cost. There is no research on automatic cost validation with source code after the final development is completed. In this paper, we propose automatically how to calculate Function Points based on natural language requirements before development and prove FP calculation based on the final source code after development. We expect validation by comparing the function scores calculated by forward engineering and reverse engineering methods.

Experimental validation of ASME strain-based seismic assessment methods using piping elbow test data

  • Jong-Min Lee ;Jae-Yoon Kim;Hyun-Seok Song ;Yun-Jae Kim ;Jin-Weon Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권5호
    • /
    • pp.1616-1629
    • /
    • 2023
  • To quantify the conservatism of existing ASME strain-based evaluation methods for seismic loading, this paper presents very low cycle fatigue test data of elbows under various cyclic loading conditions and comparison of evaluation results with experimental failure cycles. For strain-based evaluation methods, the method presented in ASME BPVC CC N-900 and Sec. VIII are used. Predicted failure cycles are compared with experimental failure cycle to quantify the conservatism of evaluation methods. All methods give very conservative failure cycles. The CC N-900 method is the most conservative and prediction results are only ~0.5% of experimental data. For Sec. VIII method, the use of the option using code tensile properties gives ~3% of experimental data, and the use of the material-specific reduction of area can reduce conservatism but still gives ~15% of experimental data.

The Precision Validation of the Precise Baseline Determination for Satellite Formation

  • Choi, Jong-Yeoun;Lee, Sang-Jeong
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권1호
    • /
    • pp.63-70
    • /
    • 2011
  • The needs for satellite formation flying are gradually increasing to perform the advanced space missions in remote sensing and observation of the space or Earth. Formation flying in low Earth orbit can perform the scientific missions that cannot be realized with a single spacecraft. One of the various techniques of satellite formation flying is the determination of the precise baselines between the satellites within the formation, which has to be in company with the precision validation. In this paper, the baseline of Gravity Recovery and Climate Experiment (GRACE) A and B was determined with the real global positioning system (GPS) measurements of GRACE satellites. And baseline precision was validated with the batch and sequential processing methods using K/Ka-band ranging system (KBR) biased range measurements. Because the proposed sequential method validate the baseline precision, removing the KBR bias with the epoch difference instead of its estimation, the validating data (KBR biased range) are independent of the data validated (GPS-baseline) and this method can be applied to the real-time precision validation. The result of sequential precision validation was 1.5~3.0 mm which is similar to the batch precision validation.