• Title/Summary/Keyword: Validation data set

Search Result 383, Processing Time 0.02 seconds

Finding Unexpected Test Accuracy by Cross Validation in Machine Learning

  • Yoon, Hoijin
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.549-555
    • /
    • 2021
  • Machine Learning(ML) splits data into 3 parts, which are usually 60% for training, 20% for validation, and 20% for testing. It just splits quantitatively instead of selecting each set of data by a criterion, which is very important concept for the adequacy of test data. ML measures a model's accuracy by applying a set of validation data, and revises the model until the validation accuracy reaches on a certain level. After the validation process, the complete model is tested with the set of test data, which are not seen by the model yet. If the set of test data covers the model's attributes well, the test accuracy will be close to the validation accuracy of the model. To make sure that ML's set of test data works adequately, we design an experiment and see if the test accuracy of model is always close to its validation adequacy as expected. The experiment builds 100 different SVM models for each of six data sets published in UCI ML repository. From the test accuracy and its validation accuracy of 600 cases, we find some unexpected cases, where the test accuracy is very different from its validation accuracy. Consequently, it is not always true that ML's set of test data is adequate to assure a model's quality.

A Study of Optimal Ratio of Data Partition for Neuro-Fuzzy-Based Software Reliability Prediction (뉴로-퍼지 소프트웨어 신뢰성 예측에 대한 최적의 데이터 분할비율에 관한 연구)

  • Lee, Sang-Un
    • The KIPS Transactions:PartD
    • /
    • v.8D no.2
    • /
    • pp.175-180
    • /
    • 2001
  • This paper presents the optimal fraction of validation set to obtain a prediction accuracy of software failure count or failure time in the future by a neuro-fuzzy system. Given a fixed amount of training data, the most popular effective approach to avoiding underfitting and overfitting is early stopping, and hence getting optimal generalization. But there is unresolved practical issues : How many data do you assign to the training and validation set\ulcorner Rules of thumb abound, the solution is acquired by trial-and-error and we spend long time in this method. For the sake of optimal fraction of validation set, the variant specific fraction for the validation set be provided. It shows that minimal fraction of the validation data set is sufficient to achieve good next-step prediction. This result can be considered as a practical guideline in a prediction of software reliability by neuro-fuzzy system.

  • PDF

A Study on Crowd Evacuation Simulation Validation Method using The Safeguard Validation Data Set (SGVDS) 1 and 2 (The Safeguard Validation Data Set (SGVDS) 1과 2를 활용한 군중 대피 시뮬레이션 검증 방안에 관한 연구)

  • Seunghyun Lee;Jae Min Lee;Hyuncheol Kim
    • Journal of the Korean Society of Safety
    • /
    • v.39 no.3
    • /
    • pp.50-59
    • /
    • 2024
  • In recent years, building architecture has become increasingly complex and larger in scale to accommodate many people. In densely populated facilities, the interiors are becoming more intricate and high-rise, with narrow corridors, hallways, and stairs. This poses challenges for evacuating occupants in case of emergencies such as fires, making it crucial to assess the evacuation safety in advance. In evacuation safety research, there are significant limitations to theoretical studies owing to their association with crowd behavior and human evacuation characteristics, as well as the risks associated with experiments involving human participants. Consequently, evacuation experiments conducted using simulation-based methodologies are gaining recognition worldwide. However, crowd simulations face validation difficulties because of variations in crowd movement and evacuation characteristics across different cases and scenarios, as well as the challenge of accurately reflecting human characteristics during evacuations. In this study, we investigated validation methods for evacuation simulations using the SAFEGUARD validation data set (SGVDS) provided by the University of Greenwich, UK. The SGVDS collects data on crowd evacuations through actual evacuation tests conducted on ColorLine's large RO-PAX ferry and Royal Caribbean International's cruise ships. The accuracy of the crowd simulations can be validated by comparing SGVDS and crowd simulation results. This study will contribute to the development of highly accurate crowd simulations by verifying various crowd simulations.

Nondestructive Quantification of Intact Ambroxol Tablet using Near-infrared Spectroscopy (근적외분광분석법을 사용한 암브록솔 정제의 비파괴적 정량분석)

  • 임현량;우영아;김도형;김효진;강신정;최현철;최한곤
    • YAKHAK HOEJI
    • /
    • v.48 no.1
    • /
    • pp.60-64
    • /
    • 2004
  • Near-infrared (NIR) spectroscopy was used to determine rapidly and nondestructively the content of ambroxol in intact ambroxol tablets containing 30 mg (12.5% m/m nominal concentration) by collecting NIR spectra in range 1100-1750 nm. The laboratory-made samples had 10.3∼15.9% m/m nominal ambroxol concentration. The measurements were made by reflection using a fiber-optic probe and calibration was carried out by partial least square regression (PLSR) with autoscaling. Model validation was performed by randomly splitting the data set into calibration and validation data set (7 samples as a calibration data set and 5 samples as a validation data set). The developed NIR method gave results comparable to the known values of tablets in a laboratorial manufacturing Process, standard error of calibration (SEC) and standard error of prediction (SEP) being 0.49% and 0.49% m/m respectively. The method showed good accuracy and repeatability NIR spectroscopic determination in intact tablets allowed the potential use of real time monitoring for a running production process.

A Study on the Validation Test for Open Set Face Recognition Method with a Dummy Class (더미 클래스를 가지는 열린 집합 얼굴 인식 방법의 유효성 검증에 대한 연구)

  • Ahn, Jung-Ho;Choi, KwonTaeg
    • Journal of Digital Contents Society
    • /
    • v.18 no.3
    • /
    • pp.525-534
    • /
    • 2017
  • The open set recognition method should be used for the cases that the classes of test data are not known completely in the training phase. So it is required to include two processes of classification and the validation test. This kind of research is very necessary for commercialization of face recognition modules, but few domestic researches results about it have been published. In this paper, we propose an open set face recognition method that includes two sequential validation phases. In the first phase, with dummy classes we perform classification based on sparse representation. Here, when the test data is classified into a dummy class, we conclude that the data is invalid. If the data is classified into one of the regular training classes, for second validation test we extract four features and apply them for the proposed decision function. In experiments, we proposed a simulation method for open set recognition and showed that the proposed validation test outperform SCI of the well-known validation method

Quantification of Naproxen in Pharmaceutical Formulation using Near-Infrared Spectrometry (근적외 분광분석법을 이용한 나프록센 정제의 정량분석)

  • Kim Do Hyung;Woo Young Ah;Kim Hyo Jin
    • YAKHAK HOEJI
    • /
    • v.49 no.1
    • /
    • pp.1-5
    • /
    • 2005
  • Near-infrared (NIR) spectroscopy has been widely applied in various field, since it is nondestructive and no sample preparation is required. In this paper, NIR spectroscopy was used for the determination of naproxen in a commercial pharmaceutical preparation. NIR spectroscopy was used to determine the content of naproxen in intact naproxen tablets containing 250 mg ($65.8\%$ nominal concentration) by collecting NIR spectra in the range of $1100{\sim}1750nm$. The laboratory-made samples had $46.1{\sim}85.5\%$ nominal naproxen concentration. The measurements were made by reflection using a fiber-optic probe and calibration was carried out by partial least square regression (PLSR). Model validation was performed by randomly splitting the data set into calibration and validation data set (63 samples as a calibration data set and 42 samples as a validation data set). The developed NIR calibration gave results comparable to the known values of tablets in a laboratorial manufacturing process with standard error of calibration (SEC) and standard error of prediction (SEP) of $1.06\%\;and\;1.04\%$, respectively. The NIR method showed good accuracy and repeatability. NIR spectroscopic determination in intact tablets allowed the potential use of real time monitoring for a running production process.

Setting an Initial Validation Gate based on Signal Intensity for Target Tracking in IR Image Sequences (적외선 영상에서 표적 추적을 위한 신호세기 기반 초기 유효게이트 설정 방법)

  • Yang, Yu Kyung;Kim, Jieun;Lee, Boohwan
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.108-114
    • /
    • 2014
  • This paper describes a method to set an intensity-based initial validation gate for tracking filter while preserves the ability of tracking a target with maximum speed. First, we collected real data set of signal versus distance of an airplane target. And at each data point, we computed maximum distance the target can move. And a function is modeled to expect the maximum moving pixels on the lateral direction based on the intensity of the detected target in IR image sequence. The initial prediction error covariance can be computed using this function to decide the size of the initial validation gate. The simulation results show the proposed method can set the appropriate initial validation gates to track the targets with the maximum speed.

Deformable image registration in radiation therapy

  • Oh, Seungjong;Kim, Siyong
    • Radiation Oncology Journal
    • /
    • v.35 no.2
    • /
    • pp.101-111
    • /
    • 2017
  • The number of imaging data sets has significantly increased during radiation treatment after introducing a diverse range of advanced techniques into the field of radiation oncology. As a consequence, there have been many studies proposing meaningful applications of imaging data set use. These applications commonly require a method to align the data sets at a reference. Deformable image registration (DIR) is a process which satisfies this requirement by locally registering image data sets into a reference image set. DIR identifies the spatial correspondence in order to minimize the differences between two or among multiple sets of images. This article describes clinical applications, validation, and algorithms of DIR techniques. Applications of DIR in radiation treatment include dose accumulation, mathematical modeling, automatic segmentation, and functional imaging. Validation methods discussed are based on anatomical landmarks, physical phantoms, digital phantoms, and per application purpose. DIR algorithms are also briefly reviewed with respect to two algorithmic components: similarity index and deformation models.

A Study on Training Ensembles of Neural Networks - A Case of Stock Price Prediction (신경망 학습앙상블에 관한 연구 - 주가예측을 중심으로 -)

  • 이영찬;곽수환
    • Journal of Intelligence and Information Systems
    • /
    • v.5 no.1
    • /
    • pp.95-101
    • /
    • 1999
  • In this paper, a comparison between different methods to combine predictions from neural networks will be given. These methods are bagging, bumping, and balancing. Those are based on the analysis of the ensemble generalization error into an ambiguity term and a term incorporating generalization performances of individual networks. Neural Networks and AI machine learning models are prone to overfitting. A strategy to prevent a neural network from overfitting, is to stop training in early stage of the learning process. The complete data set is spilt up into a training set and a validation set. Training is stopped when the error on the validation set starts increasing. The stability of the networks is highly dependent on the division in training and validation set, and also on the random initial weights and the chosen minimization procedure. This causes early stopped networks to be rather unstable: a small change in the data or different initial conditions can produce large changes in the prediction. Therefore, it is advisable to apply the same procedure several times starting from different initial weights. This technique is often referred to as training ensembles of neural networks. In this paper, we presented a comparison of three statistical methods to prevent overfitting of neural network.

  • PDF

Deep Learning Model Validation Method Based on Image Data Feature Coverage (영상 데이터 특징 커버리지 기반 딥러닝 모델 검증 기법)

  • Lim, Chang-Nam;Park, Ye-Seul;Lee, Jung-Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.9
    • /
    • pp.375-384
    • /
    • 2021
  • Deep learning techniques have been proven to have high performance in image processing and are applied in various fields. The most widely used methods for validating a deep learning model include a holdout verification method, a k-fold cross verification method, and a bootstrap method. These legacy methods consider the balance of the ratio between classes in the process of dividing the data set, but do not consider the ratio of various features that exist within the same class. If these features are not considered, verification results may be biased toward some features. Therefore, we propose a deep learning model validation method based on data feature coverage for image classification by improving the legacy methods. The proposed technique proposes a data feature coverage that can be measured numerically how much the training data set for training and validation of the deep learning model and the evaluation data set reflects the features of the entire data set. In this method, the data set can be divided by ensuring coverage to include all features of the entire data set, and the evaluation result of the model can be analyzed in units of feature clusters. As a result, by providing feature cluster information for the evaluation result of the trained model, feature information of data that affects the trained model can be provided.