• Title/Summary/Keyword: Validation Of Model Parameters

Search Result 460, Processing Time 0.026 seconds

SVM Load Forecasting using Cross-Validation (교차검증을 이용한 SVM 전력수요예측)

  • Jo, Nam-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.11
    • /
    • pp.485-491
    • /
    • 2006
  • In this paper, we study the problem of model selection for Support Vector Machine(SVM) predictor for short-term load forecasting. The model selection amounts to tuning SVM parameters, such as the cost coefficient C and kernel parameters and so on, in order to maximize the prediction performance of SVM. We propose that Cross-Validation method can be used as a model selection algorithm for SVM-based load forecasting technique. Through the various experiments on several data sets, we found that the difference between the prediction error of SVM using Cross-Validation and that of ideal SVM is less than 5%. This shows that SVM parameters for load forecasting can be efficiently tuned by using Cross-Validation.

Model Parameter Determination of Industrial Co-generator Model Parameters through Filed Measurement (현장 계측을 통한 산업용 열병합 발전설비 모델 파라미터 결정)

  • Kim, Hak-Man
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.10
    • /
    • pp.159-165
    • /
    • 2007
  • This paper presents a method for the derivation of model parameters of a co-generation system using data measured through on-site generator characteristic testing and validates its model parameters. Dynamic models such as generator, excitation system, and turbine/governor are mainly dealt in this paper. For the purpose of validation of derived model parameters, the measured results are compared with simulation results. The comparisons between measured results and simulation results show good match.

Combined Age and Segregated Kinetic Model for Industrial-scale Penicillin Fed-batch Cultivation

  • Wang Zhifeng;Lauwerijssen Maarten J. C.;Yuan Jingqi
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.2
    • /
    • pp.142-148
    • /
    • 2005
  • This paper proposes a cell age model for Penicillium chrysogenum fed-batch cultivation to supply a qualitative insight into morphology-associated dynamics. The average ages of the segregated cell populations, such as growing cells, non-growing cells and intact productive cells, were estimated by this model. A combined model was obtained by incorporating the aver-age ages of the cell sub-populations into a known but modified segregated kinetic model from literature. For simulations, no additional effort was needed for parameter identification since the cell age model has no internal parameters. Validation of the combined model was per-formed by 20 charges of industrial-scale penicillin cultivation. Meanwhile, only two charge-dependent parameters were required in the combined model among approximately 20 parameters in total. The model is thus easily transformed into an adaptive model for a further application in on-line state variables prediction and optimal scheduling.

Validation of vehicle dynamic no del by using the optimization tool (최적화 툴을 이용한 동특성 해석 모델 검증)

  • Park, Kil-Bae;Seung, Jae-Ho;Woo, Kwan-Je
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1557-1565
    • /
    • 2009
  • According to the GM/RT2141, to assess the safety of vehicle, the validated the vehicle dynamic model should be applied. The validation of the vehicle model is against the static test, some kind of vehicle type test results have been used to determine the suspension characteristics and the vehicle dynamic characteristics. To validate the vehicle model and the test results, first the test results has been analysed as to specified the suspension characteristics and than the parameters to related with the test result has to be adjusted to show the same results of the test. In this process the parameters of vehicle model have been determined to show the coherence of the two results of the simulation and the test by trial & error. In this report, the optimization tool has been introduced in this model validation process and shows the efficient and well validated model.

  • PDF

Calibration of HSPF Hydrology Parameters Using HSPEXP Model Performance Criteria (HSPEXP 모형평가지표 이용한 HSPF 모형의 수문매개변수 보정)

  • Kim, Sang-Min;Seong, Choung-Hyun;Park, Seung-Woo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.4
    • /
    • pp.15-20
    • /
    • 2009
  • The purpose of this study was to test the applicability of the HSPEXP model performance criteria for calibrating hydrologic parameters of HSPF. Baran watershed, located at Whasung city, was selected as a study watershed in this study. Input data for the HSPF model were obtained from the digital elevation map, landuse map, soil map and others. Water flow data from 1996 to 2000 was used for calibration and from 2002 to 2007 was for validation. Using the HSPEXP decision-support software, hydrology parameters were adjusted based on total volume, then low flows, storm flows, and finally seasonal flows. Suggested criteria for each model performance variables were referenced from the previous research. For the calibration period, all the HSPEXP model performance criteria were satisfied while two criteria were slightly violated for the validation period.

Auto-calibration for the SWAT Model Hydrological Parameters Using Multi-objective Optimization Method (다중목적 최적화기 법을 이용한 SWAT 모형 수분매개변수의 자동보정)

  • Kim, Hak-Kwan;Kang, Moon-Seong;Park, Seung-Woo;Choi, Ji-Yong;Yang, Hee-Jeong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • The objective of this paper was to evaluate the auto-calibration with multi-objective optimization method to calibrate the parameters of the Soil and Water Assessment Tool (SWAT) model. The model was calibrated and validated by using nine years (1996-2004) of measured data for the 384-ha Baran reservoir subwatershed located in central Korea. Multi-objective optimization was performed for sixteen parameters related to runoff. The parameters were modified by the replacement or addition of an absolute change. The root mean square error (RMSE), relative mean absolute error (RMAE), Nash-Sutcliffe efficiency index (EI), determination coefficient ($R^2$) were used to evaluate the results of calibration and validation. The statistics of RMSE, RMAE, EI, and $R^2$ were 4.66 mm/day, 0.53 mm/day 0.86, and 0.89 for the calibration period and 3.98 mm/day, 0.51 mm/day, 0.83, and 0.84 for the validation period respectively. The statistical parameters indicated that the model provided a reasonable estimation of the runoff at the study watershed. This result was illustrated with a multi-objective optimization for the flow at an observation site within the Baran reservoir watershed.

HFFB technique and its validation studies

  • Xie, Jiming;Garber, Jason
    • Wind and Structures
    • /
    • v.18 no.4
    • /
    • pp.375-389
    • /
    • 2014
  • The high-frequency force-balance (HFFB) technique and its subsequent improvements are reviewed in this paper, including a discussion about nonlinear mode shape corrections, multi-force balance measurements, and using HFFB model to identify aeroelastic parameters. To apply the HFFB technique in engineering practice, various validation studies have been conducted. This paper presents the results from an analytical validation study for a simple building with nonlinear mode shapes, three experimental validation studies for more complicated buildings, and a field measurement comparison for a super-tall building in Hong Kong. The results of these validations confirm that the improved HFFB technique is generally adequate for engineering applications. Some technical limitations of HFFB are also discussed in this paper, especially for higher-order mode response that could be considerable for super tall buildings.

A Study of Dynamic Impact Models for Pile-Driver Breech Fatigue Testing System (대용량 포미장치 피로시험기의 충격 거동 모델링)

  • Cho, Chang-Ki;Cha, Ki-Up
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.511-519
    • /
    • 2010
  • This paper presents the modeling and validation of a pile-driver breech fatigue testing system model to replicate actual high pressure in a large caliber gun barrel. A hysteresis damping function was incorporated in the nonlinear impact force model. Test of real pile-driver breech fatigue testing system had been performed for model validation. Comparison of the experimental result and model simulation during impact were made. Numerical studies were performed to evaluate how the actual chamber pressure pattern in the live firing of gun barrel was affected by parameters' variation. Some of the parameters simulated included input velocity, damping coefficient and stiffness. As a result, a variety of actual chamber pressure pattern could be reproduced and controlled through current simulation model.

Hydrologic Calibration of HSPF Model using Parameter Estimation (PEST) Program at Imha Watershed (PEST를 이용한 임하호유역 HSPF 수문 보정)

  • Jeon, Ji-Hong;Kim, Tae-Il;Choi, Donghyuk;Lim, Kyung-Jae;Kim, Tae-Dong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.802-809
    • /
    • 2010
  • An automatic calibration tool of Hydrological Simulation Program-Fortran (HSPF), Parameter Estimation (PEST) program, was applied at the Imha lake watershed to get optimal hydrological parameters of HSPF. Calibration of HSPF parameters was performed during 2004 ~ 2008 by PEST and validation was carried out to examine the model's ability by using another data set of 1999 ~ 2003. The calibrated HSPF parameters had tendencies to minimize water loss to soil layer by infiltration and deep percolation and to atmosphere by evapotranspiration and maximize runoff rate. The results of calibration indicated that the PEST program could calibrate the hydrological parameters of HSPF with showing 0.83 and 0.97 Nash-Sutcliffe coefficient (NS) for daily and monthly stream flow and -3% of relative error for yearly stream flow. The validation results also represented high model efficiency with showing 0.88 and 0.95, -10% relative error for daily, monthly, and yearly stream flow. These statistical values of daily, monthly, and yearly stream flow for calibration and validation show a 'very good' agreement between observed and simulated values. Overall, the PEST program was useful for automatic calibration of HSPF, and reduced numerous time and effort for model calibration, and improved model setup.

Kernel method for autoregressive data

  • Shim, Joo-Yong;Lee, Jang-Taek
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.5
    • /
    • pp.949-954
    • /
    • 2009
  • The autoregressive process is applied in this paper to kernel regression in order to infer nonlinear models for predicting responses. We propose a kernel method for the autoregressive data which estimates the mean function by kernel machines. We also present the model selection method which employs the cross validation techniques for choosing the hyper-parameters which affect the performance of kernel regression. Artificial and real examples are provided to indicate the usefulness of the proposed method for the estimation of mean function in the presence of autocorrelation between data.

  • PDF