As software based digital I&C (Instrumentation and Control) systems are used more prevalently in nuclear plants, enhancement of software dependability has become an important issue in the area of nuclear I&C systems. Critical attributes of software dependability are safety and reliability. These attributes are tightly related to software failures caused by faults. Software testing and V&V (Verification and Validation) activities are hence important for enhancing software dependability. If the risky modules of safety-critical software can be predicted, it will be possible to focus on testing and V&V activities more efficiently and effectively. It should also make it possible to better allocate resources for regulation activities. We propose a prediction technique to estimate risky software modules by adopting machine learning models based on software complexity metrics. An empirical study with various machine learning algorithms was executed for comparing the prediction performance. Experimental results show SVMs (Support Vector Machines) perform as well or better than the other methods.
Journal of the military operations research society of Korea
/
v.22
no.2
/
pp.90-112
/
1996
Research issues in software engineering in recent may be object oriented methodology and software quality. Since Halstead has proposed metric-software science in 1977, software quality area has been studied in steady but inactively until 1980s. As international standards such as ISO 9000-3, 9126 were enacted in 1990s early, interest in software quality is increased but many problems such as how to validate metric, measure quality or apply metric are remained. This paper proposes software quality metric methodology which software developer or project manager can use in measuring quality and validating metric during software development. The methodology is classified by several phases: establishment of quality requirement, identification of quality metric, data collection, metric implementation, metric validation. In order to show its applicability, test program, metrics and data are applied to each phase of the methodology. Consideration of this methodology as a methodology for software quality measurement similar to development methodology for software development is needed.
Purpose: This study aimed to investigate the relationship between clinical and laboratory parameters and complication status to predict which patients can be safely discharged from the hospital on the third postoperative day (POD). Materials and Methods: Data from a prospectively maintained database of 2,110 consecutive patients with gastric adenocarcinoma who underwent curative surgery were reviewed. The third POD vital signs, laboratory data, and details of the course after surgery were collected. Patients with grade II or higher complications after the third POD were considered unsuitable for early discharge. The performance metrics were calculated for all algorithm parameters. The proposed algorithm was tested using a validation dataset of consecutive patients from the same center. Results: Of 1,438 patients in the study cohort, 142 (9.9%) were considered unsuitable for early discharge. C-reactive protein level, body temperature, pulse rate, and neutrophil count had good performance metrics and were determined to be independent prognostic factors. An algorithm consisting of these 4 parameters had a negative predictive value (NPV) of 95.9% (95% confidence interval [CI], 94.2-97.3), sensitivity of 80.3% (95% CI, 72.8-86.5), and specificity of 51.1% (95% CI, 48.3-53.8). Only 28 (1.9%) patients in the study cohort were classified as false negatives. In the validation dataset, the NPV was 93.7%, sensitivity was 66%, and 3.3% (17/512) of patients were classified as false negatives. Conclusions: Simple clinical and laboratory parameters obtained on the third POD can be used when making decisions regarding the safe early discharge of patients who underwent gastrectomy.
To support an efficient management of software verification and validation activities, many defect prediction models have been proposed based on object oriented metrics. They usually adopt logistic regression analysis, And, they state that the correctness of prediction is about 60${\sim}$70%, We performed a similar experiment with Eclipse 3.3 to check their prediction effectiveness, However, the result shows that correctness is about 40% which is much lower than the original results. We also found that univariate logistic regression analysis produces better results than multivariate logistic regression analysis.
As experiential education services are growing, the need for proper management is increasing. Considering that adequate measures are an essential factor for achieving success in managing something, it is important for managers to use a proper system of metrics to measure the performance of experiential education services. However, in spite of this need, little research has been done to develop a valid and reliable set of metrics for assessing the quality of experiential education services. The current study aims to develop a multi-item instrument for assessing the service quality of experiential education. The specific procedure is as follows. First, we generated a pool of possible metrics based on diverse literature on service quality. We elicited possiblemetric items not only from general service quality metrics such as SERVQUAL and SERVPERF but also from educational service quality metrics such as HEdPERF and PESPERF. Second, specialist teachers in the experiential education area screened the initial metrics to boost face validity. Third, we proceeded with multiple rounds of empirical validation of those metrics. Based on this processes, we refined the metrics to determine the final metrics to be used. Fourth, we examined predictive validity by checking the well-established positive relationship between each dimension of metrics and customer satisfaction. In sum, starting with the initial pool of scale items elicited from the previous literature and purifying them empirically through the surveying method, we developed a four-dimensional systemized scale to measure the superiority of experiential education and named it "Experiential Education PERFormance" (EEPERF). Our findings indicate that students (consumers) perceive the superiority of the experiential education (EE) service in the following four dimensions: EE-empathy, EE-reliability, EE-outcome, and EE-landscape. EE-empathy is a judgment in response to the question, "How empathetically does the experiential educational service provider interact with me?" Principal measures are "How well does the service provider understand my needs?," and "How well does the service provider listen to my voice?" Next, EE-reliability is a judgment in response to the question, "How reliably does the experiential educational service provider interact with me?" Major measures are "How reliable is the schedule here?," and "How credible is the service provider?" EE-outcome is a judgmentin response to the question, "What results could I get from this experiential educational service encounter?" Representative measures are "How good is the information that I will acquire form this service encounter?," and "How useful is this service encounter in helping me develop creativity?" Finally, EE-landscape is a judgment about the physical environment. Essential measures are "How convenient is the access to the service encounter?,"and "How well managed are the facilities?" We showed the reliability and validity of the system of metrics. All four dimensions influence customer satisfaction significantly. Practitioners may use the results in planning experiential educational service programs and evaluating each service encounter. The current study isexpected to act as a stepping-stone for future scale improvement. In this case, researchers may use the experience quality paradigm that has recently arisen.
To support an efficient management of software verification and validation activities, many defect prediction models have been proposed based on object oriented metrics. In order to apply defect prediction models, we need to determine a threshold value. Because we cannot know actually where defects are, it is difficult to determine threshold. Therefore, we performed a series of experiments to explore the issue of determining a threshold. In the experiments, we applied defect prediction models to other systems different from the system used in building the prediction model. Specifically, we have applied three models - Olague model, Zhou model, and Gyimothy model - to four different systems. As a result, we found that the prediction capabilities varied considerably with a chosen threshold value. Therefore, we need to perform a study on the determination of an appropriate threshold value to improve the applicably of defect prediction models.
Pak, Doohyun;Hwang, Mingyu;Lee, Minji;Woo, Sung-Il;Hahn, Sang-Woo;Lee, Yeon Jung;Hwang, Jaeuk
Korean Journal of Biological Psychiatry
/
v.27
no.1
/
pp.18-26
/
2020
Objectives The aim was to find effective vectorization and classification models to predict a psychiatric diagnosis from text-based medical records. Methods Electronic medical records (n = 494) of present illness were collected retrospectively in inpatient admission notes with three diagnoses of major depressive disorder, type 1 bipolar disorder, and schizophrenia. Data were split into 400 training data and 94 independent validation data. Data were vectorized by two different models such as term frequency-inverse document frequency (TF-IDF) and Doc2vec. Machine learning models for classification including stochastic gradient descent, logistic regression, support vector classification, and deep learning (DL) were applied to predict three psychiatric diagnoses. Five-fold cross-validation was used to find an effective model. Metrics such as accuracy, precision, recall, and F1-score were measured for comparison between the models. Results Five-fold cross-validation in training data showed DL model with Doc2vec was the most effective model to predict the diagnosis (accuracy = 0.87, F1-score = 0.87). However, these metrics have been reduced in independent test data set with final working DL models (accuracy = 0.79, F1-score = 0.79), while the model of logistic regression and support vector machine with Doc2vec showed slightly better performance (accuracy = 0.80, F1-score = 0.80) than the DL models with Doc2vec and others with TF-IDF. Conclusions The current results suggest that the vectorization may have more impact on the performance of classification than the machine learning model. However, data set had a number of limitations including small sample size, imbalance among the category, and its generalizability. With this regard, the need for research with multi-sites and large samples is suggested to improve the machine learning models.
International Journal of Computer Science & Network Security
/
v.21
no.12spc
/
pp.526-538
/
2021
Machine and deep learning-based models are emerging techniques that are being used to address prediction problems in biomedical data analysis. DNA sequence prediction is a critical problem that has attracted a great deal of attention in the biomedical domain. Machine and deep learning-based models have been shown to provide more accurate results when compared to conventional regression-based models. The prediction of the gene sequence that leads to cancerous diseases, such as prostate cancer, is crucial. Identifying the most important features in a gene sequence is a challenging task. Extracting the components of the gene sequence that can provide an insight into the types of mutation in the gene is of great importance as it will lead to effective drug design and the promotion of the new concept of personalised medicine. In this work, we extracted the exons in the prostate gene sequences that were used in the experiment. We built a Deep Neural Network (DNN) and Bi-directional Long-Short Term Memory (Bi-LSTM) model using a k-mer encoding for the DNA sequence and one-hot encoding for the class label. The models were evaluated using different classification metrics. Our experimental results show that DNN model prediction offers a training accuracy of 99 percent and validation accuracy of 96 percent. The bi-LSTM model also has a training accuracy of 95 percent and validation accuracy of 91 percent.
Background Carpal tunnel release is one of the most common surgical procedures performed by hand surgeons. The authors created a surgical simulation of open carpal tunnel release utilizing a mobile and rehearsal platform app. This study was performed in order to validate the simulator as an effective training platform for carpal tunnel release. Methods The simulator was evaluated using a number of metrics: construct validity (the ability to identify variability in skill levels), face validity (the perceived ability of the simulator to teach the intended material), content validity (that the simulator was an accurate representation of the intended operation), and acceptability validity (willingness of the desired user group to adopt this method of training). Novices and experts were recruited. Each group was tested, and all participants were assigned an objective score, which served as construct validation. A Likert-scale questionnaire was administered to gauge face, content, and acceptability validity. Results Twenty novices and 10 experts were recruited for this study. The objective performance scores from the expert group were significantly higher than those of the novice group, with surgeons scoring a median of 74% and medical students scoring a median of 45%. The questionnaire responses indicated face, content, and acceptability validation. Conclusions This mobile-based surgical simulation platform provides step-by-step instruction for a variety of surgical procedures. The findings of this study help to demonstrate its utility as a learning tool, as we confirmed construct, face, content, and acceptability validity for carpal tunnel release. This easy-to-use educational tool may help bring surgical education to a new- and highly mobile-level.
Ebid, Abdel Hameed IM;Motaleb, Sara M Abdel;Mostafa, Mahmoud I;Soliman, Mahmoud MA
Clinical and Experimental Reproductive Medicine
/
v.48
no.2
/
pp.163-173
/
2021
Objective: This study aimed to characterize a validated model for predicting oocyte retrieval in controlled ovarian stimulation (COS) and to construct model-based nomograms for assistance in clinical decision-making regarding the gonadotropin protocol and dose. Methods: This observational, retrospective, cohort study included 636 women with primary unexplained infertility and a normal menstrual cycle who were attempting assisted reproductive therapy for the first time. The enrolled women were split into an index group (n=497) for model building and a validation group (n=139). The primary outcome was absolute oocyte count. The dose-response relationship was tested using modified Poisson, negative binomial, hybrid Poisson-Emax, and linear models. The validation group was similarly analyzed, and its results were compared to that of the index group. Results: The Poisson model with the log-link function demonstrated superior predictive performance and precision (Akaike information criterion, 2,704; λ=8.27; relative standard error (λ)=2.02%). The covariate analysis included women's age (p<0.001), antral follicle count (p<0.001), basal follicle-stimulating hormone level (p<0.001), gonadotropin dose (p=0.042), and protocol type (p=0.002 and p<0.001 for short and antagonist protocols, respectively). The estimates from 500 bootstrap samples were close to those of the original model. The validation group showed model assessment metrics comparable to the index model. Based on the fitted model, a static nomogram was built to improve visualization. In addition, a dynamic electronic tool was created for convenience of use. Conclusion: Based on our validated model, nomograms were constructed to help clinicians individualize the stimulation protocol and gonadotropin doses in COS cycles.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.