• Title/Summary/Keyword: Validation Method

Search Result 3,126, Processing Time 0.033 seconds

Estimation of daily maximum air temperature using NOAA/AVHRR data (NOAA/AVHRR 자료를 이용한 일 최고기온 추정에 관한 연구)

  • 변민정;한영호;김영섭
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.291-296
    • /
    • 2003
  • This study estimated surface temperature by using split-window technique and NOAA/AVHRR data was used. For surface monitoring, cloud masking procedure was carried out using threshold algorithm. The daily maximum air temperature is estimated by multiple regression method using independent variables such as satellite-derived surface temperature, EDD, and latitude. When the EDD data added, the highest correlation shown. This indicates that EDD data is the necessary element for estimation of the daily maximum air temperature. We derived correlation and experience equation by three approaching method to estimate daily maximum air temperature. 1) non-considering landcover method as season, 2) considering landcover method as season, and 3) just method as landcover. The last approaching method shows the highest correlation. So cross-validation procedure was used in third method for validation of the estimated value. For all landcover type 5, the results using the cross-validation procedure show reasonable agreement with measured values(slope=0.97, intercept=-0.30, R$^2$=0.84, RMSE=4.24$^{\circ}C$). Also, for all landcover type 7, the results using the cross-validation procedure show reasonable agreement with measured values(slope=0.993, Intercept=0.062, R$^2$=0.84, RMSE=4.43$^{\circ}C$).

  • PDF

Quantitative analysis and validation of naproxen tablets by using transmission raman spectroscopy

  • Jaejin Kim;Janghee Han;Young-Chul Lee;Young-Ah Woo
    • Analytical Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.114-122
    • /
    • 2024
  • A transmission Raman spectroscopy-based quantitative model, which can analyze the content of a drug product containing naproxen sodium as its active pharmaceutical ingredient (API), was developed. Compared with the existing analytical method, i.e., high-performance liquid chromatography (HPLC), Raman spectroscopy exhibits high test efficiency owing to its shorter sample pre-treatment and measurement time. Raman spectroscopy is environmentally friendly since samples can be tested rapidly via a nondestructive method without sample preparation using solvent. Through this analysis method, rapid on-site analysis was possible and it could prevent the production of defective tablets with potency problems. The developed method was applied to the assays of the naproxen sodium of coated tablets that were manufactured in commercial scale and the content of naproxen sodium was accurately predicted by Raman spectroscopy and compared with the reference analytical method such as HPLC. The method validation of the new approach was also performed. Further, the specificity, linearity, accuracy, precision, and robustness tests were conducted, and all the results were within the criteria. The standard error of cross-validation and standard error of prediction values were determined as 0.949 % and 0.724 %, respectively.

Cross-Validation method for Science and Technology Research Paper considering Interdisciplinary Approach (다학제적 접근을 고려한 과학기술논문 상호검증 방법)

  • Han, Young-shin
    • Journal of Engineering Education Research
    • /
    • v.18 no.5
    • /
    • pp.3-10
    • /
    • 2015
  • Researchers in science and technology has broadened the scope of research in order to solve complex problems, academic exchange has also been actively carried out. If the paper which is a mean of interdisciplinary approach has a limited term and the formula, it can act as barriers to access for many researchers in various fields. This paper proposes a cross-validation method for eliminating documentary barriers based on discrete event system formalism. We expect that our proposed method will improve a cross-validation considering researchers in another fields.

Validation of the Control Logic for Automated Material Handling System Using an Object-Oriented Design and Simulation Method (객체지향 설계 및 시뮬레이션을 이용한 자동 물류 핸들링 시스템의 제어 로직 검증)

  • Han Kwan-Hee
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.8
    • /
    • pp.834-841
    • /
    • 2006
  • Recently, many enterprises are installing AMSs(Automated Manufacturing Systems) for their competitive advantages. As the level of automation increases, proper design and validation of control logic is a imperative task for the successful operation of AMSs. However, current discrete event simulation methods mainly focus on the performance evaluation. As a result, they lack the modeling capabilities for the detail logic of automated manufacturing system controller. Proposed in this paper is a method of validation of the controller logic for automated material handling system using an object-oriented design and simulation. Using this method, FA engineers can validate the controller logic easily in earlier stage of system design, so they can reduce the time for correcting the logic errors and enhance the productivity of control program development Generated simulation model can also be used as a communication tool among FA engineers who have different experiences and disciplines.

Field Validation of alternative extraction method for the determination of airborne MWFs (대체용매를 이용한 금속가공유 측정방법 타당성에 대한 현장평가)

  • Jeong, Jee Yeon;Paik, Nam Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.2
    • /
    • pp.96-101
    • /
    • 2009
  • The purpose of this study was to conduct the field validation of alternative method(ETM method) by using non-carcinogenic, and less toxic solvents than NIOSH (National Institute for Occupational Safety and Health) analytical method 5524 for measuring the airborne metalworking fluids in workplaces. We carried out the field validation test by using the exposure chamber, guaranteeing the air sampling homogeneously in a machining environment. The ETM mixed solvent presented the complete solubility of MWFs used in test field. Based on the field test data, the bias of the ETM method from reference method, NIOSH analytical method 5524, was from -7.0% to 5.1%. The overall uncertainty of the ETM nethod was 21.6%, which satisfied the NIOSH criteria for the sampling and analytical criteria.

Sequence Group Validation based on Boundary Locking for Valid XML Documents (유효한 XML 문서에 대한 경계 로킹에 기반한 시퀀스 그룹 검증 기법)

  • Choi, Yoon-Sang;Park, Seog
    • Journal of KIISE:Databases
    • /
    • v.32 no.6
    • /
    • pp.628-640
    • /
    • 2005
  • The XML is well accepted in several different Web application areas. As soon as many users and applications work concurrently on the same collection of XML documents, isolating accesses and modifications of different transactions becomes an important issue. When an XML document correctly corresponds to the rules laid out in a DTD or XML schema, it is also said to be valid. The valid XML document's validity should be guaranteed after the document is updated. The validation method mentioned above, however, results in lower degree of concurrency. For getting higher degree of concurrency and minimizing the range of the XML document validity, a new validation method based on a specific locking method is required. In this paper we propose the sequence group validation method for minimizing the range of the XML document validity. We also propose the boundary locking method for isolating accesses and modifications of different transactions while supporting the valid XML document's validity. Finally, the results of some experiments show the validation and locking methods increase the degree of transaction concurrency.

A Study on the Validation Test for Open Set Face Recognition Method with a Dummy Class (더미 클래스를 가지는 열린 집합 얼굴 인식 방법의 유효성 검증에 대한 연구)

  • Ahn, Jung-Ho;Choi, KwonTaeg
    • Journal of Digital Contents Society
    • /
    • v.18 no.3
    • /
    • pp.525-534
    • /
    • 2017
  • The open set recognition method should be used for the cases that the classes of test data are not known completely in the training phase. So it is required to include two processes of classification and the validation test. This kind of research is very necessary for commercialization of face recognition modules, but few domestic researches results about it have been published. In this paper, we propose an open set face recognition method that includes two sequential validation phases. In the first phase, with dummy classes we perform classification based on sparse representation. Here, when the test data is classified into a dummy class, we conclude that the data is invalid. If the data is classified into one of the regular training classes, for second validation test we extract four features and apply them for the proposed decision function. In experiments, we proposed a simulation method for open set recognition and showed that the proposed validation test outperform SCI of the well-known validation method

GLOBAL GENERALIZED CROSS VALIDATION IN THE PRECONDITIONED GL-LSQR

  • Chung, Seiyoung;Oh, SeYoung;Kwon, SunJoo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.149-156
    • /
    • 2019
  • This paper present the global generalized cross validation as the appropriate choice of the regularization parameter in the preconditioned Gl-LSQR method in solving image deblurring problems. The regularization parameter, chosen from the global generalized cross validation, with preconditioned Gl-LSQR method can give better reconstructions of the true image than other parameters considered in this study.

Formal Validation Method and Tools for French Computerized Railway Interlocking Systems

  • Antoni, Marc
    • International Journal of Railway
    • /
    • v.2 no.3
    • /
    • pp.99-106
    • /
    • 2009
  • Checks and tests before putting safety facilities into service as well as the results of these tests are essential, time consuming and may show great variations between each other. Economic constraints and the increasing complexity associated with the development of computerized tools tend to limit the capacity of the classic approval process (manual or automatic). A reduction of the validation cover rate could result in practice. This is not compatible with the French national plan to renew the interlocking systems of the national network. The method and the tool presented in this paper makes it possible to formally validate new computerized systems or evolutions of existing French interlocking systems with real-time functional interpreted Petri nets. The aim of our project is to provide SNCF with a method for the formal validation of French interlocking systems. A formal proof method by assertion, which is applicable to industrial automation equipment such as interlocking systems, and which covers equally the specification and its real software implementation, is presented in this paper. With the proposed method we completely verify that the system follows all safety properties at all times and does not show superfluous conditions: it replaces all the indoor checks (not the outdoor checks). The advantages expected are a significant reduction of testing time and of the related costs, an increase of the test coverage rate, an answer to the new demand of railway infrastructure maintenance engineering to modify and validate computerized interlocking systems. Formal methods mastery by infrastructure engineers are surely a key to prove that more safety is not necessarily more expensive.

  • PDF

Candidate Points and Representative Cross-Validation Approach for Sequential Sampling (후보점과 대표점 교차검증에 의한 순차적 실험계획)

  • Kim, Seung-Won;Jung, Jae-Jun;Lee, Tae-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.1 s.256
    • /
    • pp.55-61
    • /
    • 2007
  • Recently simulation model becomes an essential tool for analysis and design of a system but it is often expensive and time consuming as it becomes complicate to achieve reliable results. Therefore, high-fidelity simulation model needs to be replaced by an approximate model, the so-called metamodel. Metamodeling techniques include 3 components of sampling, metamodel and validation. Cross-validation approach has been proposed to provide sequnatially new sample point based on cross-validation error but it is very expensive because cross-validation must be evaluated at each stage. To enhance the cross-validation of metamodel, sequential sampling method using candidate points and representative cross-validation is proposed in this paper. The candidate and representative cross-validation approach of sequential sampling is illustrated for two-dimensional domain. To verify the performance of the suggested sampling technique, we compare the accuracy of the metamodels for various mathematical functions with that obtained by conventional sequential sampling strategies such as maximum distance, mean squared error, and maximum entropy sequential samplings. Through this research we team that the proposed approach is computationally inexpensive and provides good prediction performance.