Objectives: Both the valence and arousal components of affect are important considerations when managing mental healthcare because they are associated with affective and physiological responses. Research on arousal and valence analysis, which uses images, texts, and physiological signals that employ deep learning, is actively underway; research investigating how to improve the recognition rate is needed. The goal of this research was to design a deep learning framework and model to classify arousal and valence, indicating positive and negative degrees of emotion as high or low. Methods: The proposed arousal and valence classification model to analyze the affective state was tested using data from 40 channels provided by a dataset for emotion analysis using electrocardiography (EEG), physiological, and video signals (the DEAP dataset). Experiments were based on 10 selected featured central and peripheral nervous system data points, using long short-term memory (LSTM) as a deep learning method. Results: The arousal and valence were classified and visualized on a two-dimensional coordinate plane. Profiles were designed depending on the number of hidden layers, nodes, and hyperparameters according to the error rate. The experimental results show an arousal and valence classification model accuracy of 74.65 and 78%, respectively. The proposed model performed better than previous other models. Conclusions: The proposed model appears to be effective in analyzing arousal and valence; specifically, it is expected that affective analysis using physiological signals based on LSTM will be possible without manual feature extraction. In a future study, the classification model will be adopted in mental healthcare management systems.
In this paper, we introduce an interface for exploring music using emotional model. First, we survey arousal-valence factors of various music and calculate a correlation between audio fefatures of music and arousal-valence factors to build an AV model. Then, various music is aligned and arranged using the AV model and the user can explore music in this interface. To select the desired music more intuitively, we introduce new fade in/out function based on the location of the user's mouse point. We also offer several mode of selecting music so user can explore music using most suitable mode of interface. With our interface, the user can find the emotionally desired music more easily.
Journal of Korean Society of Industrial and Systems Engineering
/
v.37
no.4
/
pp.1-11
/
2014
This paper addresses the emotion computing model for software affective agents. In this paper, emotion is represented in valence-arousal-dominance dimensions instead of discrete categorical representation approach. Firstly, a novel emotion model architecture for affective agents is proposed based on Scherer's componential theories of human emotion, which is one of the well-known emotion models in psychological area. Then a fuzzy logic is applied to determine emotional statuses in the emotion model architecture, i.e., the first valence and arousal, the second valence and arousal, and dominance. The proposed methods are implemented and tested by applying them in a virtual training system for children's neurobehavioral disorders.
Journal of the Korea Academia-Industrial cooperation Society
/
v.18
no.12
/
pp.230-241
/
2017
The main purpose of this study was to empirically investigate the effects of participation behavior and performance improvement on motivation factors of Korean university students which participated in LINC by utilizing Vroom's Expectancy Theory. Three motivation factors of valence, instrumentality, and expectancy were examined in this study. In addition, two different models (valence and force model) analyzed the causal relationships regarding participation behavior and performance improvement. 236 data were collected and findings of this study were as follows: First, comparative analysis between demographic characteristics including university, major, and residence had no significant differences in mean value. However, females had higher levels of recognition related to valence (attractiveness) relative to males. Second, valence and the force model were significant predictors of LINC participation behavior and performance improvement. Furthermore, the coefficient of determination and beta coefficient of the force model were higher compared with the valence model. Third, the level of mediation effects including direct, indirect, and total effect of the force model was higher than the valence model. LINC participation behavior had a partial mediating effect between the three motivation factors and performance improvement variable.
Journal of Korea Society of Industrial Information Systems
/
v.26
no.1
/
pp.1-10
/
2021
This study proposed a Long-Short Term Memory network to consider changes in emotion over time, and applied an attention mechanism to give weights to the emotion states that appear at specific moments. We used 32 channel EEG data from DEAP database. A 2-level classification (Low and High) experiment and a 3-level classification experiment (Low, Middle, and High) were performed on Valence and Arousal emotion model. As a result, accuracy of the 2-level classification experiment was 90.1% for Valence and 88.1% for Arousal. The accuracy of 3-level classification was 83.5% for Valence and 82.5% for Arousal.
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.5
/
pp.200-212
/
2019
The purpose of this study is to examine the motivational factors of university graduates participating in 'Youth Technology Transfer Specialist Training Project(Youth TLO)' by applying Vroom's expectancy theory. Moreover, it is verified that the effect of actual participation behavior and individual performance improvement for the university graduates in Gyeonggi-do, Busan regions. The motivation factors were consisted of valence, instrumentality, and expectancy. An empirical analysis was conducted of the effects on the verification of the demographic characteristics of the target, the behaviour of personal business participation in the Valence and Force model, and the improvement of performance. Three results were inferred from 322 collected data as follows; First, comparative analysis about expectancy, which related to work experience, according to demographic characteristics such as gender, residence, age, and employment period revealed no significant differences in mean value, except career duration. Especially, the university graduates in 'Youth TLO' who had internship experience had the highest level of recognition for the expectancy. Second, both of valence and force model had influence on participation behavior and performance improvement. Notably, determination of coefficient for the valence model were higher than those for the force model. Third, level of mediation effects for the valence model were higher than those for the force model in respect of direct, indirect, and the total. Moreover, it was verified that the three motivation factors could improve individual performance and participation behavior had partial mediation effect.
In this paper, we verify the relation between elements (active and inactive) of Russell's emotional dimension ("A Circumplex Model") to propose a new representing method. Russell's emotional dimension expresses emotional words (happy, joy, sad, nervous, etc.) as a point on the two dimensions (Arousal and Valence). It is most commonly used in many filed such as Science of Emotion & Sensibility, Human-Computer Interaction (HCI), and Psychology etc. But other researchers have insisted that Russell's emotional dimension have to be modified because of its inherent problems. Such problems included the possibility of mixed feelings, the difference of emotion and sensibility, and the difference of Arousal axis and Valence axis. Therefore, we verify relationship of A Circumplex Model's elements (active and inactive) and find how to people express their Arousal feelings using survey. We finally propose new method to express emotion in Russell's emotional dimension. Using this method, we can solve Russell's problems and compensate other researches.
Journal of Korean Society of Industrial and Systems Engineering
/
v.35
no.2
/
pp.64-70
/
2012
This paper presents a statistical analysis method for the selection of electroencephalogram (EEG) electrode positions and spectral features to recognize emotion, where emotional valence and arousal are classified into three and two levels, respectively. Ten experiments for a subject were performed under three categorized IAPS (International Affective Picture System) pictures, i.e., high valence and high arousal, medium valence and low arousal, and low valence and high arousal. The electroencephalogram was recorded from 12 sites according to the international 10~20 system referenced to Cz. The statistical analysis approach using ANOVA with Tukey's HSD is employed to identify statistically significant EEG electrode positions and spectral features in the emotion recognition.
This study examined the conditional indirect effect of EEG (electroencephalogram) arousal on the relationship among affective valence, visual attention, perceived self-relevance, and attitudes toward campaign issues in the context of public service announcements (PSAs). Using SPSS macro (No. 14) of conditional process model, the findings in this current study indicated that the perceived self-relevance mediates the relationship between affective valence of PSA and attitudes toward issues and, in turn, is moderated by EEG arousal, indicating goodness-of-fit of the moderated mediation of psychophysiological arousal on PSAs. The results suggested that management of PSAs should be considered the strategic combination between affective valence and perceived self-relevance in advertising appeals.
Among the discussions on affective representation, the first is to explain the affective representation in the dimensions, and the second is to explain the affective representation according to the modality. In previous studies, to explain affective representation, valence models (signed valence, unsigned valence) and Modality-generality models (modality-general, modality-specific) were presented. In this study, we compared models presented in the previous study using the recently published ASMR to confirm which models explain affective representation well. The data used in this study were behavioral rating values collected by Kim & Kim (2022), and these were obtained for ASMR stimuli that were divided into three affective types (negative, neutral, and positive) and two modalities (auditory and audiovisual). Then, a multidimensional scaling, a representational similarity analysis with a two-way repeated measures ANOVA, and a multiple regression analysis with a two-way repeated measures ANOVA were performed. The results revealed that signed valence and modality-general distinguished between affective types of stimuli better than unsigned valence and modality-specific. Similar to the results of multidimensional scaling, the results of a representational similarity analysis and a multiple regression also showed that the signed valence and modality-general significantly explained affective representation better than the unsigned valence and the modality-specific. These results suggest that the model in which positive and negative are located at the opposite ends of the one dimension explains the affective representation of ASMR well, and that the affective representation was consistent regardless of modality.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.