• Title/Summary/Keyword: Vadose zone

Search Result 48, Processing Time 0.025 seconds

Borehole radar monitoring of infiltration processes in a vadose zone

  • Jang, Han-Nu-Ree;Park, Mi-Kyung;Kuroda, Seiichiro;Kim, Hee-Joon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.313-316
    • /
    • 2007
  • Ground-penetrating radar (GPR) is an effectiveness tool for imaging spatial distribution of hydrogeologic parameters. An artificial groundwater recharge test has been conducted in Nagaoka City in Japan, and time-lapse crosshole GPR data were collected to monitor infiltration processes in a vadose zone. Since radiowave velocities in a vadose zone are largely controlled by variations in water content, the increase in traveltimes is interpreted as an increase in saturation in the test zone. We use a finite-difference time-domain method in two-dimensional cylindrical coordinates to simulate field results. Numerical modeling successfully reproduces the major feature of velocity changes in the filtration process.

  • PDF

A New Evaluation Model for Natural Attenuation Capacity of a Vadose Zone Against Petroleum Contaminants (유류 오염물질에 대한 불포화대 자연 저감능 등급화 기법 개발)

  • Woo, Heesoo;An, Seongnam;Kim, Kibeum;Park, Saerom;Oh, Sungjik;Kim, Sang Hyun;Chung, Jaeshik;Lee, Seunghak
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.spc
    • /
    • pp.92-98
    • /
    • 2022
  • Although various methods have been proposed to assess groundwater vulnerability, most of the models merely consider the mobility of contaminants (i.e., intrinsic vulnerability), and the attenuation capacity of vadose zone is often neglected. This study proposed an evaluation model for the attenuation capacity of vadose zone to supplement the limitations of the existing index method models for assessing groundwater vulnerability. The evaluation equation for quantifying the attenuation capacity was developed from the combined linear regression and weighted scaling methods based on the lab-scale experiments using various vadose zone soils having different physical and biogeochemical properties. The proposed semi-quantifying model is expected to effectively assess the attenuation capacity of vadose zone by identifying the main influencing factors as input parameters together with proper weights derived from the coefficients of the regression results. The subsequent scoring and grading system has great versatility while securing the objectivity by effectively incorporating the experimental results.

Scientific Appreciation of Groundwater in the Hydrologic Cycle. - Some Experimental Results Concerning Rapid Water Table Response to Surface Phenomena.

  • Kayane, Isamu
    • Water for future
    • /
    • v.22 no.3
    • /
    • pp.289-298
    • /
    • 1989
  • A review is made of transient phenomena ralation to flow in the vadose zone. Reviewed topics include rapid water table response to rainfall, pulsating flow due to pressure perturbations in the vasoes zone, and the wave-like propagation of increased soil moisture caused by intermittent rainfall. As a basis of interpreting these phenomena, zoning of the vadose zone into a residual water zone, an unsaturated capillaty zone, and a saturated capillary zone are proposed. Possible implications with respect to hydrological processes relating to these phenomena are discussed.

  • PDF

불교란 토양시료의 불포화대 수리전도도-유효공극율의 상판관계 분석

  • Lee Byeong-Seon;Lee Gi-Cheol;Lee Myeong-Ha;Lee Ju-Yeong;Kim Jeong-Hui;U Nam-Chil
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.411-414
    • /
    • 2006
  • This study was examined to determine hydraulic conductivity of vadose zone($K_s$) and effective porosity(${\phi}_e$) of undisturbed soil profiles collected at each vadose zone of 6 study areas in South Korea. Effective porosity was approximately 19% of total porosity for each soil profile. Applied to Ahuja's equation, the correlation between $K_s$ and ${\phi}_e$ showed $y=1.3{\times}10^{-7}x^{2.15}(r^2=0.37)$ for total soil profiles. Although the small numbers of soil profile were used for this study, the result of this study might be used for other soil hydraulic studies as reasonable data.

  • PDF

LNAPL Detection with GPR (GPR 탐사방법을 이용한 유류오염물질(LNAPL) 탐지)

  • Kim, Chang-Ryol
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2001.09a
    • /
    • pp.94-103
    • /
    • 2001
  • An experiment was conducted using a sand and gravel-filled tank model, to investigate the influence on the GPR response of vadose zone gasoline vapor phase effects and residual gasoline distributed by a fluctuating water table. After background GPR measurements were made with only water in the tank, gasoline was injected into the bottom of the model tank to simulate a subsurface discharge from a leaking pipe or tank. Results from the experiment show the sensitivity of GPR to the changes in the moisture content and its effectiveness for monitoring minor fluctuation of the water table. The results also demonstrate a potential of GPR for detecting possible vapor phase effects of volatile hydrocarbons in the vadose zone as a function of time, and for detecting the effects of residual phase of hydrocarbons in the water saturated system. In addition, the results provide the basis for a strategy that has the potential to successfully detect and delineate LNAPL contamination at field sites where zones of residual LNAPL in the water saturated system are present in the subsurface.

  • PDF

Delay Time Estimation of Recharge in the Hancheon Watershed, Jeju Island (제주도 한천유역의 함양 지체시간 산정)

  • Kim, Nam-Won;Na, Hanna;Chung, Il-Moon
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.605-613
    • /
    • 2014
  • In this work, the delay time for groundwater recharge was estimated by comparing simulated recharges by means of SWAT(Soil and Water Assessment Tool) model and WTF(Water Table Fluctuation) method. The delay time for groundwater recharge means that the time when the water from rainfall travelled through vadose zone just after getting out of soil zone bottom. As measuring this delay time is almost impossible, we used to compare the estimated values from modeling(SWAT) and analytic method(WTF). The test site is Hancheon watershed which has 8 groundwater measurement stations. The results show that the altitude has a linear relationship with the estimated delay time values. To validate these results, we conducted corelation analysis between transformed groundwater levels and observed ones. The results showed that computed groundwater levels have good corelation($R^2$=0.97, 0.87, respectively). The estimated delay time would be used for the groundwater behaviour characteristics in vadose zone. As recharge rates vary according to the height, the delay time is thought to be an import variable for the proper groundwater recharge estimation.

유류오염대수층에서 고온 공기분사공정법을 통한 TPH, VOCs, $CO_2$ 변화에 관한 특성인자 연구

  • Lee Jun-Ho;Park Gap-Seong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.232-236
    • /
    • 2005
  • In-situ Air Sparging (IAS, AS) is a groundwater remediation technique, in which organic contaminants are volatilized into air as it rises from saturated to vadose soil zone. The purpose of this study was to investigate the effect of environmental conditions on the degradation of VOCs (Volatile Organic Compounds) and $CO_2$ in the unsaturated zone and TPH (Total Petroleum Hydrocarbons) in saturated zone of sandy loam. In the laboratory, diesel (10,000 mg TPH/kg)-contaminated saturated soil. After heating the soil for 36 days, the equilibrium temperature of soil reached to $34.9{\pm}2.7^{\circ}C$ and TPH concentration was reduced to 78.9% of the initial value, Volatilization loss of VOCs in TPH was about 2%, The reduction gradient of $CO_2$ concentration was 0.018/day in air space and 0.0007/day in unsaturated zone.

  • PDF

Surface Geophysical Survey for Delineation of Weathered Zone of Chojeong Area and Investigation of Fault Fracture Zones (초정지역의 풍화대 조사 및 단층파쇄 지역의 불연속면 조사를 위한 지표물리탐사)

  • Kim, Ji-Soo;Han, Soo-Hyung
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.517-523
    • /
    • 2007
  • Geophysical surveys(seismic refraction, electrical resistivity, and ground penetrating radar) were performed to delineate the weathering zone associated with vadose water in Chojeong area and investigate the fault related fracture zones. On the basis of seismic velocity structures, weathering layer for the southwestern part is interpreted to be deeper than for the northeastern part. The depth to bedrock(i.e., thickness of weathered zone) from seismic refraction data attempted to be correlated with drill-core data and groundwater level. As for the investigation of geological discontinuities such as fault related fracture zone, seismic refraction, electrical resistivity, and ground penetrating data are compositely employed in terms of velocity and resistivity structures for mapping of surface boundary of the discontinuities up to shallow depth. Surface boundaries of fracture zone are well indicated in seismic velocity and electrical resistivity structures. Accurate estimation of weathered zone and fracture zone can be successfully available for mapping of attitude of vadose water layer.

A study on the Measurement of Soil Water Concentration by Time Domain Reflectometry (TDR(Time Domain Reflectometry)을 이용한 토양수농도 측정에 관한 연구)

  • Park, Jae-Hyeon
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.2
    • /
    • pp.123-132
    • /
    • 1998
  • Monitoring solute transport has been known to be difficult especially for the unsaturated soil. The object of this study is to investigate the TDR application to monitoring solute concentration in the vadose zone. The TDR calibration test was conducted for soil samples with various water contents and concentrations. The voltage attenuation of electromagnetic wave of TDR was used to estimate the bulk electrical conductivity of a soil. The relationship between the bulk soil electrical conductivity and the solute concentration was assumed to be linear at a constant volumetric soil water content. In this study four proposed relationships were compared using data obtained from KCI solution at three different concentrations. Relationships given by Topp, Daltaon, Yanuka showed the linearity between the bulk soil electrical conductivity and the solute concentration, which were more pronounced than Zegelin's. The three relationships were found to be useful to measure the solute concentration in the vadose zone. In addition, TDR method was proven to be a viable technique in monitoring solute transport through unsaturated soils in transient flow condition.

  • PDF

Distribution and Behavior of Soil CO2 in Pohang area: Baseline Survey and Preliminary Interpretation in a Candidate Geological CO2 Storage Site (포항 지역 토양 CO2의 분포 및 거동 특성 연구: CO2 지중저장 부지 자연 배경 조사 및 예비 해석)

  • Park, Jinyoung;Sung, Ki-Sung;Yu, Soonyoung;Chae, Gitak;Lee, Sein;Yum, Byoung-Woo;Park, Kwon Gyu;Kim, Jeong-Chan
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.49-60
    • /
    • 2016
  • Distribution and behavior of baseline soil CO2 were investigated in a candidate geologic CO2 storage site in Pohang, with measuring CO2 concentrations and carbon isotopes in the vadose zone as well as CO2 fluxes and concentrations through ground surface. This investigation aimed to assess the baseline CO2 levels and to build the CO2 monitoring system before injecting CO2. The gas in the vadose zone was collected using a peristaltic pump from the depth of 60 cm below ground surface, and stored at gas bags. Then the gas components (CO2, O2, N2, CH4) and δ13CCO2 were analyzed using GC and CRDS (cavity ringdown spectroscopy) respectively in laboratory. CO2 fluxes and CO2 concentrations through ground surface were measured using Li-COR in field. In result, the median of the CO2 concentrations in the vadose zone was about 3,000 ppm, and the δ13CCO2 were in the wide range between −36.9‰ and −10.6‰. The results imply that the fate of CO2 in the vadose zone was affected by soil property and vegetations. CO2 in sandy or loamy soils originated from the respiration of microorganisms and the decomposition of C3 plants. In gravel areas, the CO2 concentrations decreased while the δ13CCO2 increased because of the mixing with the atmospheric gas. In addition, the relation between O2 and CO2, N2, and the relation between N2/O2 and CO2 implied that the gases in the vadose zone dissolved in the infiltrating precipitation or the soil moisture. The median CO2 flux through ground surface was 2.9 g/m2/d which is lower than the reported soil CO2 fluxes in areas with temperate climates. CO2 fluxes measured in sandy and loamy soil areas were higher (median 5.2 g/m2/d) than those in gravel areas (2.6 g/m2/d). The relationships between CO2 fluxes and concentrations suggested that the transport of CO2 from the vadose zone to ground surface was dominated by diffusion in the study area. In gravel areas, the mixing with atmospheric gases was significant. Based on this study result, a soil monitoring procedure has been established for a candidate geologic CO2 storage site. Also, this study result provides ideas for innovating soil monitoring technologies.