• Title/Summary/Keyword: Vacuum-forming

Search Result 206, Processing Time 0.032 seconds

Fabrication Process and Forming Analysis of Fuel Cell Bipolar Plate by Injection Condition of Vacuum Die Casting (진공 다이캐스팅 공법의 사출조건에 따른 연료전지용 분리판 성형 해석 및 제조 공정)

  • Jin, Chul-Kyu;Jang, Chang-Hyun;Kim, Jae-Sung;Choi, Jae-Won;Kang, Chung-Gil
    • Journal of Korea Foundry Society
    • /
    • v.31 no.5
    • /
    • pp.274-283
    • /
    • 2011
  • The vacuum die casting is a promising candidate of the stamping process for fabrication of fuel cell bipolar plate due to its advantages, such as precision casting, mass production and short production time. This study proposes vacuum die casting process to fabricate bipolar plates in fuel cell. Bipolar plates were fabricated under various injection conditions such as molten metal temperature and injection velocity. Also, according to injection velocity conditions, simulation results of MAGMA soft were compared to the experimental results. In case of melt temperature $650^{\circ}C$, misrun occurred. When the melt temperature was $730^{\circ}C$, mechanical properties were low due to dendrite microstructure. Injection velocity has to set at more than 2.0 m/s to fabricate the sound sample. When melt temperature, injection velocity (Fast shot), and vacuum pressure are $700^{\circ}C$, 2.5 m/s and 30 kPa respectively, sample had good formability and few casting defects. Simulation results are mostly in agreement with experimental results.

The Controller Design of a 2.4MJ Pulse Power Supply for a Electro-Thermal-Chemical Gun (전열화학포용 2.4MJ 펄스 파워 전원의 제어기 설계)

  • Kim, Jong-Soo;Jin, Y.S.;Lee, H.S.;Rim, Geun-Hie;Kim, J.S.
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.12
    • /
    • pp.511-517
    • /
    • 2006
  • The key issues in high power, high energy applications such as electromagnetic launchers include safety, reliability, flexibility, efficiency, compactness, and cost. To explore some of the issues, a control scheme for a large current wave-forming was designed, built and experimentally verified using a 2.4MJ pulse power system (PPS). The PPS was made up of eight capacitors bank unit, each containing six capacitors connected in parallel. Therefore there were 48 capacitors in total, with ratings of 22kV and 50kJ each. Each unit is charged through a charging switch that is operated by air pressure. For discharging each unit has a triggered vacuum switch (TVS) with ratings of 200kA and 250kV. Hence, flexibility of a large current wave-forming can be obtained by controlling the charging voltage and the discharging times. The whole control system includes a personal computer(PC), RS232 and RS485 pseudo converter, electric/optical signal converters and eight 80C196KC micro-controller based capacitor-bank module(CBM) controllers. Hence, the PC based controller can set the capacitor charging voltages and the TVS trigger timings of each CBM controller for the current wave-forming. It also monitors and records the system status data. We illustrated that our control scheme was able to generate the large current pulse flexibly and safely by experiments. The our control scheme minimize the use of optical cables without reducing EMI noise immunity and reliability, this is resulting in cost reduction. Also, the reliability was increased by isolating ground doubly, it reduced drastically the interference of the large voltage pulse induced by the large current pulse. This paper contains the complete control scheme and details of each subsystem unit.

COUPLED ANALYSIS OF INJECTION MOLDING AND FILM FORMING FOR IDENTIFYING FILM DEFORMATION IN IMD PROCESS (IMD 공정 중 필름 변형 특성 파악을 위한 사출 및 필름성형 간 연계해석)

  • Yoon, J.H.;Hur, N.;Bae, A.H.;Lee, T.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.20-25
    • /
    • 2013
  • In various manufacturing industries, an in-mold decoration (IMD) process for plastic objects is widely utilized because a film forming and an injection molding processes run simultaneously. In the present study, the deformation of polymer film and filling of resin in the IMD process were numerically investigated to evaluate the quality of the plastic object formed by the IMD process, which consists of thermoforming and injection molding processes. To obtain the initial shape of the polymer film during the injection molding process, the deformation of the polymer film in the thermoforming process was pre-formed using the vacuum conditions to attach the film to a cavity. Since the properties and deformation of polymer film are greatly affected by the behavior of polymer resin being injected into a mold cavity, numerical simulations for the injection molding and film forming were performed with one-way coupling method. The results showed that the injected resin could lead to the tearing of the polymer film in local regions near the corners. In order to verify the proposed numerical methodology, the numerical results of the deformation patterns printed on the initial polymer film were compared with the experimental data. The proposed methodology to couple film forming analysis with injection molding analysis can be used to predict the deformation of film in IMD process.

Fabrication Method of OPV using ESD Spray Coating (ESD 스프레이를 이용한 OPV 제작 기법)

  • Kim, Jungsu;Jo, Jeongdai;Kim, Dongsoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.84.2-84.2
    • /
    • 2010
  • PEMS (printed electro-mechanical system) is fabricated by means of various printing technologies. Passive and active components in 2D or 3D such as conducting lines, resistors, capacitors, inductors and TFT, which are printed with functional materials, can be classified in this category. And the issue of PEMS is applied to a R2R process in the manufacturing process. In many electro-devices, the vacuum process is used as the manufacturing process. However, the vacuum process has a problem: it is difficult to apply toa continuous process as a R2R printing process. In this paper, we propose an ESD (electro static deposition) printing process has been used to apply an organic solar cell of thin film forming. ESD is a method of liquid atomization by electrical forces, anelectrostatic atomizer sprays micro-drops from the solution injected into the capillary, with electrostatic force generated by electric potential of about tens of kV. ESD method is usable in the thin film coating process of organic materials and continuous process as a R2R manufacturing process. Therefore, we experiment the thin films forming of PEDOT:PSS layer and Active layer which consist of the P3HT:PCBM. The result of experiment, organic solar cell using ESD thin film coated method is occurred efficiency of about 1.4%. Also, the case of only used to ESD method in the active layer coating is occurred efficiency of about 1.86% as the applying a spin coating in the PEDOT:PSS layer. We can expect that ESD method is possible for continuous process to manufacture in the organic solar cell or OLED device.

  • PDF

Large-area imaging evolution of micro-scale configuration of conducting filaments in resistive switching materials using a light-emitting diode

  • Lee, Keundong;Tchoe, Youngbin;Yoon, Hosang;Baek, Hyeonjun;Chung, Kunook;Lee, Sangik;Yoon, Chansoo;Park, Bae Ho;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.285-285
    • /
    • 2016
  • Resistive random access memory devices have been widely studied due to their high performance characteristics, such as high scalability, fast switching, and low power consumption. However, fluctuation in operational parameters remains a critical weakness that leads to device failures. Although the random formation and rupture of conducting filaments (CFs) in an oxide matrix during resistive switching processes have been proposed as the origin of such fluctuations, direct observations of the formation and rupture of CFs at the device scale during resistive switching processes have been limited by the lack of real-time large-area imaging methods. Here, a novel imaging method is proposed for monitoring CF formation and rupture across the whole area of a memory cell during resistive switching. A hybrid structure consisting of a resistive random access memory and a light-emitting diode enables real-time monitoring of CF configuration during various resistive switching processes including forming, semi-forming, stable/unstable set/reset switching, and repetitive set switching over 50 cycles.

  • PDF

Development of the Organic Solar Cell Technology using Printed Electronics (인쇄전자 기술을 이용한 유기 태양전지 기술 개발)

  • Kim, Jungsu;Yu, Jongsu;Yoon, Sungman;Jo, Jeongdai;Kim, Dongsoo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.113.1-113.1
    • /
    • 2011
  • PEMS (printed electro-mechanical system) is fabricated by means of various printing technologies. Passive and active compo-nents in 2D or 3D such as conducting lines, resistors, capacitors, inductors and TFT(Thin Film Transistor), which are printed withfunctional materials, can be classified in this category. And the issue of PEMS is applied to a R2R process in the manu-facturing process. In many electro-devices, the vacuum process is used as the manufacturing process. However, the vacuum process has a problem, it is difficult to apply to a continuous process such as a R2R(roll to roll) printing process. In this paper, we propose an ESD (electro static deposition) printing process has been used to apply an organic solar cell of thin film forming. ESD is a method of liquid atomization by electrical forces, an electrostatic atomizer sprays micro-drops from the solution injected into the capillary with electrostatic force generated by electric potential of about several tens kV. ESD method is usable in the thin film coating process of organic materials and continuous process as a R2R manufacturing process. Therefore, we experiment the thin films forming of PEDOT:PSS layer and active layer which consist of the P3HT:PCBM. The organic solar cell based on a P3HT/PCBM active layer and a PEDOT:PSS electron blocking layer prepared from ESD method shows solar-to-electrical conversion efficiency of 1.42% at AM 1.5G 1sun light illumination, while 1.86% efficiency is observed when the ESD deposition of P3HT/PCBM is performed on a spin-coated PEDOT:PSS layer.

  • PDF

Utilization of Wastepaper Fibers for Development of Environment-friendly Shock-Absorbing Materials (환경친화적 완충재의 개발을 위한 폐지 섬유의 이용)

  • Kim, Gyeong-Yun;Kim, Chul-Hwan;Lee, Young-Min;Song, Dae-Bin;Shin, Tae-Gi;Kim, Jae-Ok;Park, Chong-Yawl
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.2 s.115
    • /
    • pp.52-60
    • /
    • 2006
  • Environment-friendly shock-absorbing materials were made of wastepaper such as Korean old corrugated containers(KOCC) and Korean old newsprint (KONP) with a vacuum forming method. The plate-like cushioning materials made of KOCC and KONP respectively by vacuum forming showed superior shock-absorbing properties with lower elastic moduli compared to expanded polystyrene (EPS) and pulp mold. Even though the plate-like materials had many free voids in their fiber structure, their apparent densities (${\approx}0.1g/cm^3$) were a little higher than that of EPS (${\approx}0.03g/cm^3$) and much lower than that of pulp mold(${\approx}0.3g/cm^3$). However, the elastic moduli of the cushioning materials made of wastepaper were much lower than that of EPS or pulp mold. This finding implies that the cushioning materials made of KOCC fibers containing more lignin than KONP show better shock-absorbing properties than KONP. Moreover, the cushioning materials made of KOCC and KONP respectively showed greater porosity than pulp mold. The addition of cationic starch to the cushioning materials contributed to the increase in the elastic modulus to the same level as that of EPS. Furthermore, the deterioration in fiber quality by repeated use of wastepaper played a positive role in improving shock-absorbing ability.

Development of Environment-friendly Cushioning Materials by Pulping of Waste Residual Woods (폐잔재의 펄프화를 통한 환경친화적 완충소재의 개발)

  • Lee, Young-Min;Kim, Chul-Hwan;Kim, Jae-Ok;Kim, Gyeong-Yun;Shin, Tae-Gi;Song, Dae-Bin;Park, Chong-Yawl
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.2 s.115
    • /
    • pp.61-71
    • /
    • 2006
  • Environment-friendly shock-absorbing (cushioning) materials were made using a vacuum forming method from waste wood collected from local mountains in Korea. The waste wood was pulped by thermomechanical pulping. The TMP cushions showed superior shock-absorbing properties with lower elastic moduli compared to EPS(Expanded Polystyrene) and pulp mold. Even though the TMP cushions made using at different suction times had many free voids in their inner fiber structures, their apparent densities were a little higher than EPS and much lower than pulp mold. The addition of cationic starch improved elastic modulus of the TMP cushions without increasing the apparent density, which was different from surface sizing with starch. The porosity of the TMP cushions was a little greater than EPS and much less than pulp mold. Finally, the TMP cushions have great potential to endure external impacts occurring during goods distribution.

V-Based Self-Forming Layers as Cu Diffusion Barrier on Low-k Samples

  • Park, Jae-Hyeong;Mun, Dae-Yong;Han, Dong-Seok;Gang, Yu-Jin;Sin, So-Ra;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.409-409
    • /
    • 2013
  • 최근, 집적 소자의 미세화에 따라 늘어난 배선 신호 지연 및 상호 간섭, 그리고 소비 전력의 증가는 초고집적 소자 성능 개선에 한계를 가져온다. 이에 따라 기존의 알루미늄(Al)/실리콘 절연 산화막은 구리(Cu)/저유전율 박막(low-k)으로 대체되고 있고, 이는 소자 성능 개선에 큰 영향을 미친다. 그러나 Cu는 Si과 low-k 내부로 확산이 빠르게 일어나 소자의 비저항을 높이고, 누설 전류를 일으키는 등 소자의 성능을 저하시킬 수 있는 문제점을 가지고 있다. 이러한 Cu의 확산을 막기 위하여 Ta, TaN 등과 같은 확산방지막에 대한 연구가 활발히 진행되어 왔으나, 배선 공정의 집적화와 low-k 대체에 따른 공정 및 신뢰성 문제로 인해 새로운 확산방지막의 개발이 필요하게 되었다. 이를 위해, 본 연구에서는 Cu-V 합금을 사용하여 low-k 기판 위에 확산방지막을 자가 형성 시키는 공정에 대한 연구를 진행하였다. 다양한 low-k 기판에서 열처리조건에 따른 Cu-V 합금의 특성을 확인하기 위해 4-point probe를 통한 비저항 평가와 XRD (X-ray diffraction) 분석이 이뤄졌다. 또한, TEM (transmission electron microscope)을 이용하여 $300^{\circ}C$에서 1 시간 동안 열처리를 거쳐 자가형성된 V-based interlayer가 low-k와 Cu의 계면에서 균일하게 형성된 것을 확인하였다. 형성된 V-based interlayer의 barrier 특성을 평가하고자 Cu-V합금/low-k/Si 구조와 Cu/low-k/Si 구조의 leakage current를 비교 분석하였다. Cu/low-k/Si 구조는 비교적 낮은 온도에서 leakage current가 급격히 증가하는 양상을 보였으나, Cu-V 합금/low-k/Si 구조는 $550^{\circ}C$의 thermal stress 에서도 leakage current의 변화가 거의 없었다. 이러한 결과를 바탕으로 열처리를 통해 자가형성된 V-based interlayer의 Cu/low-k 간 확산방지막으로서 가능성을 검증하였다.

  • PDF

Reset-first Resistance Switching Mechanism of HfO2 Films Based on Redox Reaction with Oxygen Drift-Diffusion

  • Kim, Jong-Gi;Lee, Sung-Hoon;Lee, Kyu-Min;Na, Hee-Do;Kim, Young-Jae;Ko, Dae-Hong;Sohn, Hyun-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.286-287
    • /
    • 2012
  • Reset-first resistive switching mechanism based on reduction reaction in HfO2-x with oxygen drift-diffusion was studied. we first report that the indirect evidence of local filamentary conductive path formation in bulk HfO2 film with local TiOx region at Ti top electrode formed during forming process and presence of anion-migration at interface between electrode and HfO2 during resistive switching through high resolution transmission electron microscopy (HRTEM), electron disperse x-ray (EDX), and electron energy loss spectroscopy (EELS) mapping. Based on forming process mechanism, we expected that redox reaction from Ti/HfO2 to TiOx/HfO2-x was responsible for an increase of initial current with increasing the post-annealing process. First-reset resistive switching in above $350^{\circ}C$ annealed Ti/HfO2 film was exhibited and the redox phenomenon from Ti/HfO2 to TiOx/HfO2-x was observed with high angle annular dark field (HAADF) - scanning transmission electron microscopy (STEM), EDX and x-ray photoelectron spectroscopy. Therefore, we demonstrated that the migration of oxygen ions at interface region under external electrical bias contributed to bipolar resistive switching behavior.

  • PDF