• Title/Summary/Keyword: Vacuum ultraviolet radiation

Search Result 16, Processing Time 0.036 seconds

Development of the Most Optimized Ionizer for Reduction in the Atmospheric Pressure and Inert Gas Area (감압대기 및 불활성가스 분위기에서 적합한 정전기 제거장치의 개발)

  • Lee, Dong Hoon;Jeong, Phil Hoon;Lee, Su Hwan;Kim, Sanghyo
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.42-46
    • /
    • 2016
  • In LCD Display or semiconductor manufacturing processes, the anti-static technology of glass substrates and wafers becomes one of the most difficult issues which influence the yield of the semiconductor manufacturing. In order to overcome the problems of wafer surface contamination various issues such as ionization in decompressed vacuum and inactive gas(i.e. $N_2$ gas, Ar gas, etc.) environment should be considered. Soft X ray radiation is adequate in air and $O_2$ gas at atmospheric pressure while UV radiation is effective in $N_2$ gas Ar gas and at reduced pressure. At this point of view, the "vacuum ultraviolet ray ionization" is one of the most suitable methods for static elimination. The vacuum ultraviolet can be categorized according to a short wavelength whose value is from 100nm to 200nm. this is also called as an Extreme Ultraviolet. Most of these vacuum ultraviolet is absorbed in various substances including the air in the atmosphere. It is absorbed substances become to transit or expose the electrons, then the ionization is initially activated. In this study, static eliminator based on the vacuum ultraviolet ray under the above mentioned environment was tested and the results show how the ionization performance based on vacuum ultraviolet ray can be optimized. These vacuum ultraviolet ray performs better in extreme atmosphere than an ordinary atmospheric environment. Neutralization capability, therefore, shows its maximum value at $10^{-1}{\sim}10^{-3}$ Torr pressure level, and than starts degrading as pressure is gradually reduced. Neutralization capability at this peak point is higher than that at reduced pressure about $10^4$ times on the atmospheric pressure and by about $10^3$ times on the inactive gas. The introductions of these technology make it possible to perfectly overcome problems caused by static electricity and to manufacture ULSI devices and LCD with high reliability.

Fabrication of reflectometer for vacuum ultraviolet spectral characteristic measurements of optical component (광학부품의 진공자외선특성 측정용 분광반사율계 제작)

  • 신동주;김현종;이인원
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.325-330
    • /
    • 2004
  • We fabricated a vacuum ultraviolet spectre-reflectometer which consists of a deuterium light source, a vacuum monochromator, and a sample chamber and detector module. The operation was performed in the ultraviolet spectral ranges between 115 nm and 330 nm at the vacuum pressure of 3.0 ${\times}$ 10$^{-4}$ Pa. The wavelength of the vacuum monochromator was calibrated with the line spectrum of a low pressure Mercury lamp of 253.652 nm and 184.95 nm wavelengths, and its resolution was 0.012 nm, and the precision of wavelength was $\pm$ 0.03 nm. With this reflectometer and a deuterium lamp, we measured the spectral regular transmittance and reflectance of materials(MgF$_2$, CaF$_2$, BaF$_2$, SiO$_2$, Sapphire) used as optical components over the spectral range between 115 nm and 230 nm.

Emission Plasma Spectroscopy of High-pressure Microdischarges

  • Lee, Byeong-Jun;Ju, Yeong-Do;Kim, Seung-Hwan;Ha, Tae-Gyun;Gong, Hyeong-Seop;Park, Yong-Jeong;Park, Jong-Do;Nam, Sang-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.253.2-253.2
    • /
    • 2014
  • Micro hollow cathode discharges (MHCDs) are high-pressure, non-equilibrium discharges. Those MHCDs are useful to produce an excimer radiation. A major advantage of excimer sources is their high internal efficiency which may reach values up to 40% when operated under optimum conditions. To produce strong excimer radiation, the optimisation of the discharge conditions however needs a detailed knowledge of the properties of the discharge plasma itself. The electron density and temperature influence the excitation as well as plasma chemistry reactions and the gas temperature plays a major role as a significant energy loss process limiting efficiency of excimer radiation. Most of the recent spectroscopic investigations are focusing on the ultraviolet or vacuum ultraviolet range for direct detection of the excimer. In our experiments we have concentrated on investigating the micro hollow cathodes from the near UV to the near infrared (300~850 nm) to measure the basic plasma parameters using standard plasma diagnostic techniques such as stark broadening for electron density and the relative line intensity method for electron temperature. Finally, the neutral gas temperature was measured by means of the vibrational rotational structures of the second positive system of nitrogen.

  • PDF

Experimental Techniques for Surface Science with Synchrotron Radiation

  • Jonhnson, R.L.;Bunk, O.;Falkenberg, G.;Kosuch, R.;Zeysing, J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.17-17
    • /
    • 1998
  • Synchrotron radiation is produced when charged particles moving with relativistic velocities a are accelerated - for example, deflected by the bending magnets which guide the electron or p positrons in circular accelerators or storage rings. By using special focusing magnetic lattices i in the particle accelerators it is possible to make the dimensions of the particle beam very small with a hi맹 charge density which results in a light source with high b디lIiance. Synchrotron light h has important properties which make it ideal for a wide range of investigations in surface s science. The fact that the spectrum of electromagnetic radiation emitted in a bending magnet e extends in a continuum from the 얹r infra red region to hard x-rays means that it is id않I for a v variety of spectroscopic studies. Since there are no convenient lasers, or other really bright l light sources, in the vacuum ultraviolet and soft x-ray re.밍ons the development of synchrotron r radiation has enabled enormous advances to be made in this di펌C비t spectr따 re밍on. P Polarization-dependent measurements, for ex없nple ellipsometry or circular dichroism studies a are possible because the radiation has a well-defined polarization - linear in the plane of orbit w with additional right-circular, or left-circular, components for emission an생es above, or below, t the horizontal, respectively. Since the synchrotron light is emitted from a bunch of charge c circulating in a ring the light is emitted with a well-defined time structure with a short flash of l light every time a bunch passes an exit port. The time structure depends on the size of the ring a and the number and sequence of filling of the bunches. A pulsed light source enables time¬r resolved studies to be performed which provide direct information on the lifetimes and decay m modes of excited states and in addition opens up the possibility of using time of flight t techniques for spectroscopic studies. The fact that synchrotron radiation is produced in a clean u ultrahi야 vacuum environment is of gr않t importance for surce science studies. The current t비rd generation synchrotron light sources provide exceptionally high baliance and stability a and open up possibilities for experiments which would have been inconceivable only a short time ago.

  • PDF

Analysis of Vacuum UV Photon Travel Characteristics in AC PDP Cell by Monte Carlo Simulation (몬테카를로 방법을 이용한 AC PDP 셀의 진공자외선 광자 이동 특성 해석)

  • Kim, Jeong-Ho;Jeong, Hui-Seop;Lee, Byeong-Ho;Hwang, Gi-Ung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.9
    • /
    • pp.634-640
    • /
    • 1999
  • Resonance radiation trapping has a great influence on the characteristics of vacuum ultraviolet(VUV) photon emissions in AC PDP cell. We calculate the spatial andspectral distributions of VUV photons, which are radiated by excited Xe in AC PDP cell by Monte Carlo method. Especially a dip in the spectrum at center frequency is discovered both in simulation and in experiment. We give a physical explanation of this phenomenon by the concept of frequency-dependent mean free path of VUV photons.

  • PDF

Characterization of functionalized silicon surfaces and graphenes using synchrotron radiation PES

  • Hwang, Chan-Cuk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.40-40
    • /
    • 2010
  • Employing synchrotron radiation based photoemission spectroscopy (PES) and scanning tunneling microscopy (STM), our group have investigated Si surfaces, various graphenes and molecular nanolayers. In this talk, I introduce recent results on the surface related systems. All experiments have been performed at the surface science beamlines, 3A2 and 7B1, in Pohang Accelerator Laboratory, where high resolution PES (HRPES) and angle resolved PES (ARPES) are available. Metals or molecules are adsorbed and sometimes extreme ultraviolet is irradiated onto surfaces to give them special functions. I show several examples for surface functionalzation and how to characterize solid surface using the analysis techniques. In particular, lots of ARPES and STM data are provided from graphenes, a strong candidate for replacing Si and conducting oxide currently used in many electronic and optical devices.

  • PDF

Fabrication of ZnO inorganic thin films by using UV-enhanced Atomic Layer Deposition

  • Song, Jong-Su;Yun, Hong-Ro;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.312.1-312.1
    • /
    • 2016
  • We have deposited ZnO thin films by ultraviolet (UV) enhanced atomic layer deposition using diethylznic (DEZ) and water (H2O) as precursors with UV light. The atomic layer deposition relies on alternating dose of the precursor on the surface and subsequent chemisorption of the precursors with self-limiting growth mechanism. Though ALD is useful to deposition conformal and precise thin film, the surface reactions of the atomic layer deposition are not completed at low temperature in many cases. In this experiment, we focused on the effects of UV radiation during the ALD process on the properties of the inorganic thin films. The surface reactions were found to be complementary enough to yield uniform inorganic thin films and fully react between DEZ and H2O at the low temperature by using UV irradiation. The UV light was effective to obtain conductive ZnO film. And the stability of TFT with UV-enhanced ZnO was improved than ZnO by thermal ALD method. High conductive UV-enhanced ZnO film have the potential to applicability of the transparent electrode.

  • PDF

Comparison study of heatable window film using ITO and ATO

  • Park, Eun Mi;Lee, Dong Hoon;Suh, Moon Suhk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.300.2-300.2
    • /
    • 2016
  • Increasing of the demand for energy savings for buildings, thermal barrier films have more attracted. In particular, as heat loss through the windows have been pointed out to major problems in the construction and automobile industries, the research is consistently conducted for improving the thermal blocking performance for windows. The main theory of the technology is reflect the infrared rays to help the cut off the inflow of the solar energy in summer and outflow of the heat from indoors in winter to save the energy on cooling and heating. Furthermore, this is well known for prevent glare, reduces fading caused by harmful ultraviolet radiation and easy to apply on constructed buildings if it made as a film. In addition to these advantages, apply the transparent electrode to eliminate condensation by heating. Generally ITO is used as a transparent electrode, but is has a low stability in environmental factors. In this study, ITO and its alternative, ATO, is deposited by sputtering system and then the characteristic is evaluated each material based thermal barrier thin film. The optical property was measured on wide range of wavelength (200 nm 2500 nm) to know the transparency in visible wavelength and reflectivity in IR wavelength range. The electrical property was judged by sheet resistivity. Finally the changes of the temperature and current of the deposited film was observed while applying a DC power.

  • PDF

Optical characteristics of p-type ZnO epilayers doped with Sb by metalorganic chemical vapor deposition

  • Kwon, B.J.;Cho, Y.H.;Choi, Y.S.;Park, S.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.122-122
    • /
    • 2010
  • ZnO is a widely investigated material for the blue and ultraviolet solid-state emitters and detectors. It has been promoted due to a wide-band gap semiconductor which has large exciton binding energy of 60 meV, chemical stability and low radiation damage. However, there are many problems to be solved for the growth of p-type ZnO for practical device applications. Many researchers have made an efforts to achieve p-type conductivity using group-V element of N, P, As, and Sb. In this letter, we have studied the optical characteristics of the antimony-doped ZnO (ZnO:Sb) thin films by means of photoluminescence (PL), PL excitation, temperature-dependent PL, and time-resolved PL techniques. We observed donor-to-acceptor-pair transition at about 3.24 eV with its phonon replicas with a periodic spacing of about 72 meV in the PL spectra of antimony-doped ZnO (ZnO:Sb) thin films at 12 K. We also investigate thermal activation energy and carrier recombination lifetime for the samples. Our result reflects that the antimony doping can generate shallow acceptor states, leading to a good p-type conductivity in ZnO.

  • PDF

Surface Modification of Polyacrylonitrile by Low-temperature Plasma (저온플라즈마처리에 의한 폴리아크릴로니트릴의 표면개질)

  • Seo, Eun-Deock
    • Textile Coloration and Finishing
    • /
    • v.19 no.1 s.92
    • /
    • pp.45-52
    • /
    • 2007
  • Polyacrylonitrile(PAN) fiber was treated with low-temperature plasmas of argon and oxygen for surface modification, and its surface chemical structure and morphology were examined by a field emission scanning electron microscope(FESEM) and a Fourier-transform infrared microspectroscopy(IMS). The argon-plasma treatment caused the only mechanical effect by sputtering of ion bombardment, whereas the oxygen plasma brought about a chemical effect on the PAN fiber surface. The experimental evidences strongly suggested that cyclization of nitrile group and crosslinking were likely to occur in the oxygen-plasma treatment. On the other hand, with the argon-plasma treatment, numerous my pits resulted in ranging from several tens to hundreds nanometers in radius. The plasma sensitivity of functional groups such as C-H, $C{\equiv}N$, and O-C=O groups in the PAN fiber was dependent on their chemical nature of bonding in the oxygen-plasma, in which the ester group was the most sensitive to the plasma. Vacuum-ultraviolet(VUV) radiation emitted during plasma treatment played no substantial role to alter the surface morphology.