• Title/Summary/Keyword: Vacuum suction force

Search Result 11, Processing Time 0.031 seconds

Gripper Design with Adjustable Working Area for Depalletizing Delivery Cardboard box of Various Sizes (비정형 택배 상자 디팔레타이징을 위한 작업 면적 조절 그리퍼 설계)

  • Yeri Sim;Sangrok Jin
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.1
    • /
    • pp.29-36
    • /
    • 2023
  • This paper shows a design of a gripper with an adjustable working area to depalletize a delivery cardboard box of various sizes. The gripper should pick the box with only one flat surface to lift the boxes stacked close to each other. The lift force of the gripper is the vacuum suction force. To handle boxes of various sizes, the gripper adjusts the working area. The gripper operates four vacuum generators independently. The simultaneous rotation on different axes of four gripper-arms with suction cups moves the position of suction force. The six operation modes of the gripper are divided into the size of the working area. The operation mode is determined according to the size of the top side of the box. Experiments are conducted by lifting the box of various sizes. The gripper can pick the box of various sizes without vacuum leaks from unused cups. Also, the experiments verify the improvement of stability of the box by adjusting the working area of the gripper. The gripper can lift the box without deformation of the box by adjusting the working area.

New Suction Mechanism Using Permanent Magnet (영구자석을 이용한 새로운 Suction Mechanism)

  • Seo Sungkeun;Lee Seunghee;Park Jong Hyeon;Jang Taesa
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1645-1652
    • /
    • 2005
  • Pick-and-place systems using suction cups have been being widely used and continuously developed in production automation. There are, however, some drawbacks in constructing such systems. One of them is that it generates high level noise due to air compressors. And the system must have complex constitutions of mechanical component such as air compressors, air tubes, air valves, etc. Moreover, it needs continuous air supply to maintain vacuum in suction cups. If there is a failure in any suction cup, the total suction system may fail owing to air leakage. To overcome these drawbacks, we propose PMS (Permanent Magnet Suction) mechanism which has permanent magnets for vacuuming suction cups with no air compressor. The basic concept of PMS mechanism is to rotate permanent magnets with fixed angle. Simple rotation of permanent magnets changes the direction of the magnetic force applied at the suction cups. Since each suction cup has no direct connection with any of the others, the air leakage at one suction cup is not critical. The proposed suction mechanism was designed and fabricated. With some experiments, the feasibility and performance of the PMS mechanism was shown. The strong points of the PMS mechanism are in its simple structure, generating low noise, high energy efficiency, and no need of continuous energy supply.

Optimal Design of Vacuum Cleaner with a Multi Cyclone (멀티사이클론을 이용한 진공청소기의 최적설계에 관한 연구)

  • Ha, Gun-Ho;Kim, Eung-Dal;Yang, Byung-Sun;Ahn, Young-Chull
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.126-131
    • /
    • 2011
  • Cyclone, a type of particle collector widely used in the field of ambient sampling and industrial particulate control, is the principal type of gas-solids separator that uses a centrifugal force. The goal of this study is to design and evaluate the cyclone that can be used for the household vacuum cleaners. A multi cyclone with a 1st cyclone and several 2nd cyclones is designed to improve dust collection efficiency. The dust collection efficiency and the suction power of 1st cyclone are evaluated. And the dust collection efficiency and the suction power of multi cyclone are evaluated according to various sizes of inlet and vortex finder. As a result, a cone shape porous filter has better dust collection efficiency than a cylinder shape porous filter. The dust collection efficiency of a multi cyclone is 3.5% greater than that of a single cyclone.

A Study on the Structure Analysis of Up-Right Vacuum Cleaner Suction Nozzle Cover (UP-RIGHT 형 진공청소기 흡입구 커버의 구조해석)

  • 유동훈;조규종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1074-1077
    • /
    • 2004
  • This investigation is the result of a structural analysis by FEM and test to define the deformation mode of the Up-Right type Vacuum-Cleaner's Nozzle-Cover. In FEM analysis, 3 different conditions were considered separately, such as (1) Compressive force by Belt tension, (2) Friction heat between Belt and shaft and (3) Compressive force combined with heat. Throughout FEM analysis it was found that the deformation was caused by heat and it was proved through a simulation test with a real product.

  • PDF

Thermal Analysis of Vacuum Cleaner Suction Nozzle Cover under Variable Conditions (다양한 조건하에서의 진공청소기 흡입구 커버의 열변형 해석)

  • Kang, Hyung-Seon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.973-978
    • /
    • 2007
  • In this paper, we make a study of a thermal deformation by FEM and test to define the deformation mode of the Vacuum-Cleaner's Nozzle-Cover. In FEM analysis, 3 different conditions were considered separately, such as (1) Compressive force by Belt tension, (2) Friction heat between Belt and Shaft and (3) Compressive force combined with heat. Throughout FEM analysis it was found that the deformation was caused by heat and it was proved through a simulation test with a real product.

  • PDF

Development of Unmanned Cleaning Robot for Photovoltaic Panels (태양광발전시설 무인 유지보수 로봇 개발)

  • Lee, Hyungyu;Lee, Sang Soon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.144-149
    • /
    • 2019
  • This paper describes the results of a study on the unmanned maintenance robot that simultaneously performs the cleaning and inspection of the photovoltaic panels. The robot has a special adsorptive device, an infrared sensor, a vacuum level sensor and a camera. The robot uses two SSC (Sliding Suction Cup) adsorptive devices to move up and down the slope. First, the forces generated when the robot moves up the slope are mechanically analyzed, and the required design and control of the adsorption system are suggested. The robot was designed and manufactured to operate stably by using the presented results. Next, the normal force between the panel and the wheel was measured to confirm that the robot was manufactured and operated as intended, and the robot motion was tested on the inclined panel. It has been proven that robots are well designed and built to clean and inspect sloped panels.

A Study on Improving Environmental Characteristics of Cyclone Vacuum Cleaner using Life Cycle Assessment (LCA 평가를 이용한 싸이클론 진공청소기의 친환경성 개선방안에 관한 연구)

  • Hwang, Bo-Seok;Yoon, Yong-Han;Lee, Chanhyun;Yi, Hwa-Cho
    • Clean Technology
    • /
    • v.20 no.3
    • /
    • pp.241-250
    • /
    • 2014
  • In this study, performance and environmental characteristics of cyclone vacuum cleaners are analyzed and product improvement methods are investigated to minimize environmental effect of the cleaners using the result. A simplified LCA method is used to analyze environmental characteristics of the cyclone vacuum cleaners. Two cyclone vacuum cleaners with similar specifications are chosen for the experiment. Typical characteristics of cyclone vacuum cleaners such as energy consumption, suction force, noise and temperature are measured and compared. Most environmental effect was caused by the energy consumption in use phase of life cycle. Some ideas are created to reduce energy consumption of the vacuum cleaners in use phase like installing baffle, and methods to extend exchange period of filter. It is analyzed how recyclability rate of vacuum cleaners could be improved to reduce the environmental effect in whole life of the vacuum cleaners.