• Title/Summary/Keyword: Vacuum melting

Search Result 185, Processing Time 0.029 seconds

Low-Temperature Plasma Enhanced Chemical Vapor Deposition Process for Growth of Graphene on Copper

  • Ma, Yifei;Jang, Hae-Gyu;Chae, Hui-Yeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.433-433
    • /
    • 2013
  • Graphene, $sp^2$-hybridized 2-Dimension carbon material, has drawn enormous attention due to its desirable performance of excellent properties. Graphene can be applied for many electronic devices such as field-effect transistors (FETs), touch screen, solar cells. Furthermore, indium tin oxide (ITO) is commercially used and sets the standard for transparent electrode. However, ITO has certain limitations, such as increasing cost due to indium scarcity, instability in acid and basic environments, high surface roughness and brittle. Due to those reasons, graphene will be a perfect substitute as a transparent electrode. We report the graphene synthesized by inductive coupled plasma enhanced chemical vapor deposition (ICP-PECVD) process on Cu substrate. The growth was carried out using low temperature at $400^{\circ}C$ rather than typical chemical vapor deposition (CVD) process at $1,000^{\circ}C$ The low-temperature process has advantage of low cost and also low melting point materials will be available to synthesize graphene as substrate, but the drawback is low quality. To improve the quality, the factor affect the quality of graphene was be investigated by changing the plasma power, the flow rate of precursors, the scenario of precursors. Then, graphene film's quality was investigated with Raman spectroscopy and sheet resistance and optical emission spectroscopy.

  • PDF

진공상태에서의 9,10-di(2-naphthyl)anthracene (ADN) 재료의 상평형 특성 연구

  • Sim, Seop;Yun, Ju-Yeong;Kim, Jin-Tae;An, Jong-Gi;Sin, Jae-Su;Lee, Chang-Hui;Gwon, O-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.150-150
    • /
    • 2013
  • Organic Light Emitting Diode (OLED)에 사용되는 유기발광재료 9,10-di(2-naphthyl)anthracene (ADN)의 상평형 특성을 저진공에서 고진공 조건에 따라 연구하였다. ADN재료의 지속적인 가열과 압력제어가 가능한 진공시스템에서 진공도를 변화시키면서 ADN재료의 온도변화에 따른 상전이 현상을 확인하였다. 본 연구장비의 신뢰성평가를 위하여 상압에서 기존의 Differential Scanning Calorimetry (DSC) 열분석으로 측정한 ADN의 melting point와 비교하였고 각각의 진공조건에서 3회 반복 측정하여 장비신뢰성을 검증하였다. 연구결과, 0.1 Torr에서부터는 상압의 경우와 달리 ADN이 승화하는 것을 확인하였고, 예상대로 진공도가 높아질수록 상전이가 시작되는 온도가 낮아지는 것을 알 수 있었다. 이러한 결과는 기존의 DSC열분석으로는 확인할 수 없었던 고진공에서의 유기재료의 상전이 현상을 관측하였다는데 큰 의미가 있다. 향후, 이러한 방법을 활용한 고진공에서의 유기재료의 상전이 특성 관측은 유기재료를 이용한 진공 증착공정방법의 최적화와, 다양한 유기재료의 열안정성 특성 파악에 도움이 될 것으로 기대가 된다.

  • PDF

The study of Grain boundary diffusion effect in Tin/Cu by Xps (XPS를 이용한 TiN/Cu의 Grain boundary diffusion 연구)

  • 임관용;이연승;정용덕;이경민;황정남;최범식;원정연;강희재
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.2
    • /
    • pp.112-117
    • /
    • 1998
  • TiN has been investigated as a good candidate for a diffusion barrier of Cu. Therefore, in this study, the grain boundary diffusion of Cu in TiN film was investigated by X-ray photoelectron spectroscopy(XPS). In general, TiN has a columnar grain structure. In the relatively lower temperature, less than 1/3 of the melting point, it was observed that Cu diffused into TiN mainly along the grain boundaries of TiN. The grain size of TiN was measured by atomic force microscope (AFM). In order to estimate the grain boundary diffusion constants, we used the modified surface accumulation method. The activation energy, $Q_b$ was 0.23 eV, and the diffusivity, $D_{bo}$ was $5.5\times10^{-12{\textrm{cm}^2$/sec.

  • PDF

X-ray Absorption Near-edge Studies of Au1-xPtx alloys

  • Y.D. Chung;Lim, K.Y.;Lee, Y.S.;C.N.Whang;Park, B.S.;Y.Jeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.164-164
    • /
    • 2000
  • Since Au-Pt alloys have various atomic structures depending upon composition and annealing temperature, it is very interesting to investigate the electronic structures of alloys. We studied the changes of the electronic structure I the Au-Pt alloys by x-ray absorption near edge spectroscopy (XANES). Two kinds of Au-Pt alloy samples were prepared by arc melting methods and ion-beam-mixing technique. The Pt L2, 3-edge and Au L2, 3-edge X-ray absorption spectra (XPS) were measured with the electron yield mode detector at the 3C1 beam line of the Pohang Light Source (PLS). It was found that there was a substantial decrease in the area of the Pt L2, 3 white lines compared with that of pure Pt. The observed decrease in white line area was attributed to an increase in the number of pure Pt. The observed decrease in white line area was attributed to an increase in the number of 5d-electrons at the Pt site upon alloy formation. However, the Au L2, 3 edge spectra for Au-Pt alloys are all similar to that of pure Au. This implies that the 5d hole count of Au is not changed by alloy formation with Pt.

  • PDF

Thermal Vacuum Test of the Phase Change Material Thermal Control Unit Loaded on the Satellite Flight Model and Thermal Model Correlation with Test Results (위성에 탑재된 상변화물질 열제어장치 비행모델의 열진공시험 및 이를 통한 열해석 모델 보정)

  • Cho, Yeon;Kim, Taig Young;Seo, Joung-Ki;Jang, Tae Seong;Park, Hong-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.10
    • /
    • pp.729-737
    • /
    • 2022
  • Melting and icing process of the PCMTCU(Phase Change Material Thermal Control Unit) installed on the NEXTSat-2, which is scheduled to be launched in the second half, was investigated through the results of satellite-level TVT(Thermal Vacuum Test). As a result of the test, it was confirmed that the latent heat of PCM contributes to the temperature stabilization of the heating components. The thermal model for numerical analysis of the PCMTCU was correlated to acquire a reasonable degree of accuracy using the collected temperature measurements during TVT. The periodic temperature variation of the PCMTCU in normal on-orbit operation was predicted with the correlated thermal model, and the quantitative contribution of the PCM on the thermal energy management was evaluated with the liquid fraction. It will receive flight telemetry from the NEXTSat-2 after the launch, and complete the space verification of the PCMTCU.

Fabrication Process of Laminated Composites by Self-propagating High-temperature Synthesis Reaction (자전고온반응에 의한 적층복합재료의 제조공정)

  • 김희연;정동석;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.155-158
    • /
    • 2002
  • Fabrication process of metal/intermetallic laminated composites by using self-propagating high temperature synthesis(SHS) reactions between Ni and Al elemental metal foils have been investigated. Al foils were sandwiched between Ni foils and heated in a vacuum hot press to the melting point of aluminium. SHS reaction kinetics was thermodynamically analyzed through the final volume fraction of the unreacted Al related with the initial thickness ratio of Ni:Al and diffusion bonding stage before SHS reaction. Thermal aging of laminated composites resulted in the formation of functionally gradient series of intermetallic phases. Microstructure showed that the main phases of intermetallics were NiAl and $Ni_3Al$ having higher strength at room and high temperatures. The volume fractions of intermetallic phases were measured as 82.4, 58.6, 38.4% in 1:1, 2:1, 4:1 initial thickness ratio of Ni:Al.

  • PDF

Effects of Alloying Elements on the Surface Characteristics of Fe-38Al Intermetallic Compounds (Fe-38 at.% Al계 금속간화합물의 표면특성에 미치는 합금원소의 영향)

  • 최한철
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.2
    • /
    • pp.128-136
    • /
    • 2004
  • Effects of alloying elements on the surface characteristics of Fe-38Al intermetallic compounds were investigated using potentiostat. The specimens were casted by the vacuum arc melting. The subsequent homogenization and the stabilization led to the homogeneous DO$_3$ structure of the specimen. After the corrosion tests, the surface of the tested specimen was observed by the optical microscopy and scanning electron microscopy(SEM). For Fe-38 at.% Al intermetallic compound, the addition of Cr and Mo proved to be beneficial in decreasing the grain boundary attack by decreasing the active current density. Addition of Band Nb resulted in a higher active current density and also a higher passive current density. These results indicated the role of Cr and Mo in improving the pitting corrosion resistance of Fe-38 at.%Al intermetallic compound. Band Nb addition to Fe-38 at.%Al accelerated the granular corrosion. Fe-38 at.%Al containing Cr and Mo showed remarkably improved pitting corrosion resistance in comparison with Band Nb addition to Fe-38 at. %Al.

The Effect on the Strength According to Carbon Content of Kovar Steel (코바강의 탄소첨가량에 따른 강도에 미치는 영향)

  • Choi, Byung-Hui;Choi, Byung-Ky
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.28-33
    • /
    • 2010
  • Ni alloy steel is able to use during long time because of good acid and corrosion resistance. So, it's research has focused on developing the alternative alloy which is economically feasible. Recently, consumption of Kovar steel is gradually increased in field of the jet engine and the gas turbine because of its low thermal expansive characteristics. The specimens of Kovar steel(29%Ni-17%Co) contain 0.00%C, 0.03%C, 0.06%C, 0.10%C and 0.20%C, respectively. Ingots are manufactured by VIM(vacuum induction melting furnace) and then specimens are made by automatic hot rolling after heat treatment. Strength of Kovar steel according to carbon contents is estimated by hardness, tensile and impact test. Hardness of the 0.20%C specimen is more improved approximately 14.4% than one of base metal. Its strength increases 32.4% of a base metal, and its impact energy is also enhance 11.5%.

Toughening of Ni Bonded $Cr_3C_2$ by Mo Particulates (Mo 입자에 의한 Ni 결합 $Cr_3C_2$의 고인성화)

  • 한동빈;장철우;백성기;박병학
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.6
    • /
    • pp.429-432
    • /
    • 1993
  • Cr3C2 material is characterized by high chemical stability and poor sinterability with low strength [50~150MPa]. In his study, low melting temperature nickel powder was used to improve sinterability as well as strength. In addition, molydenum particles were added to the Ni-bonded Cr3C2 cermet pseudomatrix to increase resistance to fracture. The specimens made by hot-pressing under vacuum and strength was measured by 4-point bending. Indentation cracking and fractographic examination were conducted to study the interaction of the indentation cracks with the reinforcing particles. Toughening mechanisms and failure will be discussed in terms of crack/particle interactions and compared with previous works.

  • PDF

Electrical Properties of Single Crystal CdTe by Impurity (불순물에 의한 CdTe단결정의 전기적 특성)

  • 박창엽
    • 전기의세계
    • /
    • v.20 no.2
    • /
    • pp.9-14
    • /
    • 1971
  • N type single crystal CdTe is grown by doping Gallium as 0.01 percent, by using zone melting method. And also p type CdTe is grown by doping Ag, Sb, and Te as 0.01%. Resistivity and Concentration of the n.p type single crystal are measured. And then Li ions are implanted on the n type CdTe by high voltage accellerator with different amount of impurity. Indium is evaporated on the p type in high vacuum condition. These sample are heated so as to make P-N Junction in Argon gas flow. Electrical properties for solar cell are investigated. Photovoltage and current are found to be varyed according to following factor: 1) amount of impurity 2) diffusion thickness 3) temperature and time for making P-N junction. Efficiency of the P-N Junction evaporated Indium is 6.5 when it is heated at 380.deg. C for 15 minutie.

  • PDF