• Title/Summary/Keyword: Vacuum heat-transfer technology

Search Result 50, Processing Time 0.023 seconds

Performance Evaluation of a Thermo Siphon Type Radiator for LED Lighting System by using an Inverse Heat Transfer Method (역열전달해석기법에 의한 LED 조명용 무동력 냉각사이클링 방열기 성능평가)

  • Kim, E.H.;Kim, H.K.;Seo, K.S.;Lee, M.K.;Cho, C.D.
    • Transactions of Materials Processing
    • /
    • v.20 no.7
    • /
    • pp.473-478
    • /
    • 2011
  • In this study, the performance of a thermo siphon type radiator made of copper for LED lighting system was evaluated by using an inverse heat transfer method. Heating experiments and finite element heat transfer analysis were conducted for three different cases. The data obtained from experiments were compared with the analysis results. Based on the data obtained from experiments, the inverse heat transfer method was used in order to evaluate the heat transfer coefficient. First, the heat transfer analysis was conducted for non-vacuum state, without the refrigerant. The evaluated heat transfer coefficient on the radiator surface was 40W/$m^2^{\circ}C$. Second, the heat transfer analysis was conducted for non-vacuum state, with the refrigerant, resulting in the heat transfer coefficient of 95W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant. For the third case, the evaluated heat transfer coefficients were 140W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant. For the third case, the evaluated heat transfer coefficients were 140W/$m^2^{\circ}C$ for the radiator body, 5W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant for the rising position of radiator pipe, 35W/$m^2^{\circ}C$. Third, the heat transfer analysis was conducted for vacuum state, with refrigerant. For the highest position of radiator pipe, and 120W/$m^2^{\circ}C$ for the downturn position of radiator pipe. As a result of inverse heat transfer analysis, it was confirmed that the thermal performance of the current radiator was best in the case of the vacuum state using the refrigerant.

A Study on the Heat and Mass Transfer Characteristics of Vacuum Freeze Drying Process for Porous Media (다공성 물길의 진공동결건조과정에서 얼 및 물질전달 특성에 관한 연구)

  • c. s. song
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.1341-1352
    • /
    • 2001
  • Vacuum freeze drying process by which frozen water in a drying material is removed sublimation under vacuum condition, is now applied to various industrial field such as the manufacturing and packaging of pharmaceuticals in pharmaceutical industry, the drying of bio- products in bio-technology industry, the treatment of various quality food stuff in food technology, and so on. The Knowledge about the heat and mass transfer characteristics related with the vacuum freeze drying process is crucial to improve the efficiency of the process as well as the quality of dried products. In spite of increasing needs for understanding of the process, the research efforts in this fields are still insufficient. In this paper, a numerical code that can predict primary drying in a vial is developed based on the finite volume method with a moving grid system. The calculation program can handle the axis- symmetric and multi-dimensional characteristics of heat and mass transfer of the vial freeze drying process. To demonstrated the usefulness of the present analysis, a practical freeze drying of skim Milk solution in a vial is simulated and various calculation results are presented.

  • PDF

Analysis of Heat Transfer of a Magnetic Fluid Seal (자성유체씰의 열전달 해석)

  • Kim, Ock-Hyun;Lee, Hee-Bok;Lee, Min-Ki;Hong, Jeong-Hui;Kwak, Yong-Woon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.365-369
    • /
    • 2010
  • Magnetic fluid seal is characterized by its simple design, low friction and being dustless. Those advantages are deduced from the fact that the sealing element is not a solid such as rubber or plastic but it is a fluid. Those are critical for application to a rotating shaft which is inserted into a vacuum chamber where high level of vacuum and cleanness are required. For the reason the magnetic fluid seal has become a standard for vacuum chambers for semiconductor and LCD processing. It should be noted that its sealing performance is sensitive to temperature. If necessary, water cooling should be considered. Thus anticipation of the temperature distribution of the magnetic fluid seal is important before applying it. In this paper an FEM analysis of the heat transfer has been executed and compared with experimental results. An overall convective heat transfer coefficient has been adopted for the analysis, which results in satisfactory consistency of the theoretical and experimental results.

Heat Transfer between Substrate and Substrate-heater in Low Vacuum (저진공 내 시료가열판과 시료의 열전달)

  • Park, Hyon-Jae;Oh, Soo-Ghee;Shin, Yong-Hyeon;Chung, Kwang-Hwa
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.4
    • /
    • pp.302-310
    • /
    • 2008
  • Heat transfer between substrate and substrate-heater in low vacuum was investigated. The convection related with gas flow and pressure, the heat conduction considering surface roughness and contact pressure, and the heat loss by radiation depending on the surface emissivity were considered. The coefficient of heat conduction $h_c$ in the Fourier's law were determined experimentally from the temperature difference between the substrate and the substrate-heater in the range of substrate-heater temperature $100\;-\;500^{\circ}C$, in the pressures of 300 mTorr - 1 Torr. The temperature difference was then calculated in the reverse way for the purpose of verification, using the heat flow and the experimentally determined coefficients. The verified temperature differences were thus obtained within 0.33 % error.

Characteristics of Thermal Permeation of Marine Canned Products with Different Vacuum Conditions (수산물 조미통조림 제품의 진공도별 열침투 특성)

  • KIM Dong-Soo;RYU Jae-Sang;YANG Seung-Yong;LEE Keun-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.5
    • /
    • pp.399-402
    • /
    • 2000
  • Very little information is known on the canning of fishery products by vacuum pack. In this paper, some fundamental process conditions for the canning of fishery products were investigated. Moisture-controlled mackerel pike, shrimp and oyster were packed in lacquered cans with spice and additives. After sealing, pressure of the cans were reduced by do-aeration through specially designed gas-tight silicone rubber plug previously attacked to the lid. On this investigation, vacuum can prior to thermal processing were set up to 15, 30, 45 and 60 cmHg, The higher vacuum in cans showed the more quick heat transfer in thermal processing. tinder 60 cmHg vacuum, the heat transfer was more quick than that of the conventional water packed products, Under 15 cmHg, however, the heat transfer was markedly increased by air which acted as an insulator in conductive heat transfer. These results demonstrated that high vacuum was essential secure for the heat processing in vacuum pack.

  • PDF

A study on the comprehensive resources utilization of seawater by the vacuum heat transfer technology (진공열전달기술에 의한 해수의 종합자원화에 관한 연구)

  • Shao, Yude;Mun, Soo-Beom;Kim, Kyung-geun;Choi, Bu-Hong;Lee, Seo-Yeon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.685-695
    • /
    • 2015
  • Mud, iron oxide, plaster, salt, minerals, and dissolved metals are sequentially deposited in accordance with the increasing concentration of seawater. In this paper, by using the physical characteristics of the seawater, we propose a new vacuum heat-transfer technology to subsequently obtain the proportion of the dissolved components in a cost-effective manner. Based on the vacuum heat-transfer characteristics of seawater, we comprehensively divide the seawater resource processes into the following four processes: (1) the salt concentration process to the saturation concentration, (2) crystallization process for salt formation, (3) mineral precipitation, and (4) remaining of dissolved metals.

A Study on the Drying Heat Transfer for the High Quality Product of the Dried Sea Foods (고품질 수산 건제품의 건조열전달에 관한 연구)

  • Mun, Soo-Beom;Kim, Kyong-Suk;Lee, Choon-Wha;Kim, Kyung-Kun;Oh, Chul;Bae, Chang-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.460-469
    • /
    • 2010
  • In spite of the global-class aquaculture and fishing technology of our country, the processing technologies are lags behind the other nations relatively. The processed marine products are mainly frozen foods, canned goods, salty food (fermented fish products), fish paste products (boiled fish paste), and we can see that the high-value dehydrated foods by drying are very few. These problems are considered to be caused directly by the lack of drying technologies. This paper is concerned to the experimental results of drying heat transfer characteristics for the green energy type vacuum dryer for the high quality sea foods production.

Thermal Transfer Pixel Patterning by Using an Infrared Lamp Source for Organic LED Display (유기 발광 소자 디스플레이를 위한 적외선 램프 소스를 활용한 열 전사 픽셀 패터닝)

  • Bae, Hyeong Woo;Jang, Youngchan;An, Myungchan;Park, Gyeongtae;Lee, Donggu
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.27-32
    • /
    • 2020
  • This study proposes a pixel-patterning method for organic light-emitting diodes (OLEDs) based on thermal transfer. An infrared lamp was introduced as a heat source, and glass type donor element, which absorbs infrared and generates heat and then transfers the organic layer to the substrate, was designed to selectively sublimate the organic material. A 200 nm-thick layer of molybdenum (Mo) was used as the lightto-heat conversion (LTHC) layer, and a 300 nm-thick layer of patterned silicon dioxide (SiO2), featuring a low heat-transfer coefficient, was formed on top of the LTHC layer to selectively block heat transfer. To prevent the thermal oxidation and diffusion of the LTHC material, a 100 nm-thick layer of silicon nitride (SiNx) was coated on the material. The fabricated donor glass exhibited appropriate temperature-increment property until 249 ℃, which is enough to evaporate the organic materials. The alpha-step thickness profiler and X-ray reflection (XRR) analysis revealed that the thickness of the transferred film decreased with increase in film density. In the patterning test, we achieved a 100 ㎛-long line and dot pattern with a high transfer accuracy and a mean deviation of ± 4.49 ㎛. By using the thermal-transfer process, we also fabricated a red phosphorescent device to confirm that the emissive layer was transferred well without the separation of the host and the dopant owing to a difference in their evaporation temperatures. Consequently, its efficiency suffered a minor decline owing to the oxidation of the material caused by the poor vacuum pressure of the process chamber; however, it exhibited an identical color property.

Low temperature vacuum drying heat transfer characteristics of Korean raw oysters (한국산 굴의 저온진공건조 열전달특성에 관한 연구)

  • Kim, Kyung-gun;Song, Chi-sung;Choi, Se-hyun;Lee, Seo-Yeon;Mun, Soo-Beom
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Oysters are rich in nutrients with good flavor, and disease prevention is required in both the East and the West for high-quality seafood. The best way to store and transport mass-produced oysters is using dry techniques. Using both hot and frozen drying technologies to obtain a perfectly dried oyster often destroys much of the flavor and nutrients found with the oyster meat. This study uses a low temperature vacuum drying technology to investigate the final weight ratio of wild and farmed dried oysters. Additionally, the heat transfer characteristics of steamed oysters are discussed in this paper.

An Experimental Study on Vacuum Drying of Water-Saturated Porous Media (함수다공질층의 진공건조에 관한 실험적 연구 (Ⅰ))

  • Park, Hyeong-Jin;Kim, Gyeong-Geun;Kim, Myeong-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.5
    • /
    • pp.68-75
    • /
    • 1996
  • The vacuum drying characteristics of water-saturated porous media were studied experimentally. The water-saturated porous media, water-saturated sand layer, was heated by the isothermal bottom wall of the rectangular vessel. The vacuum drying rate and temperature distribution of the sand layer were measured and calculated under a variety of conditions of heated wall temperature, vacuum rate, and thickness of the test material. It was found that the drying rate due to the heat and mass teansfer is greatly influenced by the heated wall temperature, vacuum rate, and thickness of the test material.

  • PDF