• 제목/요약/키워드: Vacuum fixture

검색결과 8건 처리시간 0.028초

대형 열진공챔버용 내부 위성체 근접 치구 설계 (Design of Access Fixture for a Large Vacuum Chamber)

  • 이상훈;조혁진;서희준;문귀원
    • 항공우주산업기술동향
    • /
    • 제8권1호
    • /
    • pp.55-61
    • /
    • 2010
  • 우주환경은 고진공 환경과 태양 복사열에 의한 고온 환경 및 극저온이 반복되는 가혹한 환경으로, 위성체는 지상에서 발사되어 우주궤도에 진입한 순간부터 이러한 우주환경에 노출되어 위성체의 주요부품에 기능장애가 발생하고 결국 임무의 실패로 이어지기도 한다. 따라서 위성체는 지상에서 우주환경시험을 거쳐 기능 및 작동상태를 점검해야 한다. 한국항공우주연구원에서는 정지궤도 위성과 같은 대형 위성체의 시험을 위해 ${\phi}8m{\times}L10m $급의 대형열진공챔버를 국산화 제작하였다. 대형챔버 내부에서 우주환경시험을 수행하기 위해서는 각종 EGSE cable의 연결, MLI 도포 및 대형 챔버 내부에 대한 접근이 필요하다. 대형열진공챔버는 위성체의 크기에 비해 매우 큰 진공용기로 실제 작업시 위성체에의 접근이 용이하지 않다. 이에 대형열진공챔버 내부에서 위성체 및 챔버 내부 접근의 용이성을 제공하는 전용 치구의 필요성이 대두되어 이를 설계하고자 하며, 본 논문은 access fixture라 불리는 전용치구의 설계 과정에 대해 설명한다.

  • PDF

에어포일 기계가공 변형 연구 : 지그와 가공단계의 영향 (A Study on Machining Distortion of Airfoil Effected by Fixture and Process)

  • 라경운;지성범;조영진;박제홍;서상원;김수진
    • 한국생산제조학회지
    • /
    • 제23권5호
    • /
    • pp.465-470
    • /
    • 2014
  • Thin and wide airfoils are difficult to be machined precisely because they are deformed during and after machining processes. This paper presents the results of the airfoil deformation measured by three-dimensional (3D) scanning equipment. It also discusses the influences of fixture and the machining process on the distortion of the thin airfoil. The simple fixture bended the thin airfoil to a U-shape at the first process, and the vacuum fixture decreased the distortion of the machined airfoil at the second process. The long and thin airfoil supported by two points was buckled during the machining at its two end-regions at the third process. Results from this study suggest that use of vacuum fixture decreases the machining distortion of thin and wide airfoils.

비대칭 축류형 제품의 점진성형공정 개발 (Development of a Flexible Incremental Forging Process to Manufacture Asymmetric Shafts)

  • 알리 알툰;이석렬;홍진태;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 추계학술대회 논문집
    • /
    • pp.95-98
    • /
    • 2005
  • Shafts having asymmetry or odd number of symmetry in the cross-section can not be simply manufactured by conventional incremental radial forging. In order to manufacture such shafts, the new concept of incremental forging with one punch and a flexible fixture is developed by suggesting a flexible fixture, instead of two opposed punches used in radial forging, so that the flexible fixture only supports the workpiece while the punch is moving during forming. A new flexible fixture is designed using the steel shots and vacuum technology. An equilateral triangular cross-section is selected as the sample shape to be manufactured by the proposed manufacturing method. The desired triangular cross-sectional shaft is manufactured with the errors of $3.0\%$.

  • PDF

항공기 박판 구조의 가공가능 폭과 두께에 관한 실험 연구 (An Experiment of Machineable Width and Thickness of Airframe Thin Plate Structure)

  • 신용보;김수진
    • 한국생산제조학회지
    • /
    • 제22권1호
    • /
    • pp.162-167
    • /
    • 2013
  • The most important factor in an aircraft manufacturing is stability and weight reduction. Most of aircraft components are designed with thin plate type to satisfy weight reduction needs. The thin plate is difficult to be machined because it is apt to be vibrated by dynamic force generated in milling process. The most critical factor in machining of aluminum thin plate is width and thickness between stiffeners. So we tested many cases to find out the machinable minimum thickness at different width between stiffeners. And with the data obtained from many tests, this papers suggested the standard width thickness relation that is machinable without vacuum fixture. Machinist will be able to reduce the cost of aircraft thin plate parts by reducing the number of vacuum fixture used by the help of this standard.

New Bending System Using a Segmented Vacuum Chuck for Stressed Mirror Polishing of Thin Mirrors

  • Kang, Pilseong;Yang, Ho-Soon
    • Current Optics and Photonics
    • /
    • 제1권6호
    • /
    • pp.618-625
    • /
    • 2017
  • In the present research, a new bending system using a segmented vacuum chuck for Stressed Mirror Polishing (SMP) is developed. SMP is a special fabrication method for thin aspheric mirrors, where simple flat or spherical fabrication is applied while a mirror blank is deflected. Since a mirror blank is usually glued to a bending fixture in the conventional SMP process, there are drawbacks such as long curing time, inconvenience of mirror replacement, risk of mirror breakage, and stress concentration near the glued area. To resolve the drawbacks, a new bending system is designed to effectively hold a mirror blank by vacuum. For the developed bending system, the optimal bending load to achieve the designated mirror deflection is found by finite element analysis and an optimization algorithm. With the measurement results of the deflected mirror surfaces with the optimal bending loads, the feasibility of the developed bending system is investigated. As a result, it is shown that the bending system is appropriate for the SMP process.

2단 진공 웨이퍼 정렬장치 및 다층 구조 설계 (A Dual Vacuum Wafer Prealigner and a Multiple Level Structure)

  • 김형태;최문수
    • 유공압시스템학회논문집
    • /
    • 제8권3호
    • /
    • pp.14-20
    • /
    • 2011
  • This study aims at aligning multiple wafers to reduce wafer handling time in wafer processes. We designed a multilevel structure for a prealigner which can handle multiple wafer simultaneously in a system. The system consists of gripping parts, kinematic parts, vacuum chucks, pneumatic units, hall sensors and a DSP controller. Aligning procedure has two steps: mechanical gripping and notch finding. In the first step, a wafer is aligned in XY directions using 4-point mechanical contact. The rotational error can be found by detecting a signal in a notch using hall sensors. A dual prealigner was designed for 300mm wafers and constructed for a performance test. The accuracy was monitored by checking the movement of a notch in a machine vision. The result shows that the dual prealigner has enough performance as commercial products.

형상안내형 범용형상자동면취기의 개발을 위한 기초연구 (A Basic Research for the Development of Generalized Shape Guided Automatic Deburring Machine)

  • 김상명;정윤교;조성림
    • 한국기계가공학회지
    • /
    • 제11권3호
    • /
    • pp.104-109
    • /
    • 2012
  • Recently, the deburring process which is last process of manufacture is one of the important process for complete product. The manual deburring process can cause not only higher error rate but also irregular shape and quality of product. Therefore, Shape Guided Automatic Deburring Machine has been developed to resolve the above problems. But the Shape Guided Automatic Deburring Machine have been applied only to produce a circular product. Therefore, this machine is difficult to apply to products of various shapes. To solve this problem, we would like to develop Generalized Shape Guided Automatic Deburring Machine applicable to various shapes. To this end, we have done the modeling and design using CATIA program and have performed machine simulation.

Fabrication of carbon nanotube emitters by filtration through a metal mesh

  • ;;;이내성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.150-150
    • /
    • 2010
  • Carbon nanotubes have drawn attention as one of the most promising emitter materials ever known not only due to their nanometer-scale radius of curvature at tip and extremely high aspect ratios but also due to their strong mechanical strength, excellent thermal conductivity, good chemical stability, etc. Some applications of CNTs as emitters, such as X-ray tubes and microwave amplifiers, require high current emission over a small emitter area. The field emission for high current density often damages CNT emitters by Joule heating, field evaporation, or electrostatic interaction. In order to endure the high current density emission, CNT emitters should be optimally fabricated in terms of material properties and morphological aspects: highly crystalline CNT materials, low gas emission during electron emission in vacuum, optimal emitter distribution density, optimal aspect ratio of emitters, uniform emitter height, strong emitter adhesion onto a substrate, etc. We attempted a novel approach to fabricate CNT emitters to meet some of requirements described above, including highly crystalline CNT materials, low gas emission, and strong emitter adhesion. In this study, CNT emitters were fabricated by filtrating an aqueous suspension of highly crystalline thin multiwalled CNTs (Hanwha Nanotech Inc.) through a metal mesh. The metal mesh served as a support and fixture frame of CNT emitters. When 5 ml of the CNT suspension was engaged in filtration through a 400 mesh, the CNT layers were formed to be as thick as the mesh at the mesh openings. The CNT emitter sample of $1{\times}1\;cm^2$ in size was characteristic of the turn-on electrical field of 2.7 V/${\mu}m$ and the current density of 14.5 mA at 5.8 V/${\mu}m$ without noticeable deterioration of emitters. This study seems to provide a novel fabrication route to simply produce small-size CNT emitters for high current emission with reliability.

  • PDF