• Title/Summary/Keyword: Vacuum filtration

Search Result 71, Processing Time 0.023 seconds

Three-dimensional MXene (Ti3C2Tx) Film for Radionuclide Removal From Aqueous Solution

  • Jang, Jiseon;Lee, Dae Sung
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2018.11a
    • /
    • pp.379-379
    • /
    • 2018
  • MXenes are a new family of 2D transition metal carbide nanosheets analogous to graphene (Lv et al., 2017; Sun et al., 2018). Due to the easy availability, hydrophilic behavior, and tunable chemistry of MXenes, their use in applications for environmental pollution remediation such as heavy metal adsorption has recently been explored (Li et al., 2017). In this study, three-dimensional (3D) MXene ($Ti_3C_2T_x$) films with high adsorption capacity, good mechanical strength, and high selectivity for specific radionuclide from aquose solution were successfully fabricated by a polymeric precursor method using vacuum-assisted filtration. The highest removal efficiency on the films was 99.54%, 95.61%, and 82.79% for $Sr^{2+}$, $Co^{2+}$, and $Cs^+$, respectively, using a film dosage of 0.06 g/ L in the initial radionuclide solution (each radionuclide concentration = 1 mg/L and pH = 7.0). Especially, the adsorption process reached an equilibrium within 30 min. The expanded interlayer spacing of $Ti_3C_2T_x$ sheets in MXene films showed excellent radionuclide selectivity ($Cs^+$ and/or $Sr^{2+}/Co^{2+}$) (Simon, 2017). Besides, the MXene films was not only able to be easily retrieved from an aqueous solution by filtration after decontamination processes, but also to selectively separate desired target radionuclides in the solutions. Therefore, the newly developed MXene ($Ti_3C_2T_x$) films has a great potential for radionuclide removal from aqueous solution.

  • PDF

Fabrication of carbon nanotube emitters by filtration through a metal mesh

  • Choi, Ju-Sung;Lee, Han-Sung;Gwak, Jeung-Chun;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.150-150
    • /
    • 2010
  • Carbon nanotubes have drawn attention as one of the most promising emitter materials ever known not only due to their nanometer-scale radius of curvature at tip and extremely high aspect ratios but also due to their strong mechanical strength, excellent thermal conductivity, good chemical stability, etc. Some applications of CNTs as emitters, such as X-ray tubes and microwave amplifiers, require high current emission over a small emitter area. The field emission for high current density often damages CNT emitters by Joule heating, field evaporation, or electrostatic interaction. In order to endure the high current density emission, CNT emitters should be optimally fabricated in terms of material properties and morphological aspects: highly crystalline CNT materials, low gas emission during electron emission in vacuum, optimal emitter distribution density, optimal aspect ratio of emitters, uniform emitter height, strong emitter adhesion onto a substrate, etc. We attempted a novel approach to fabricate CNT emitters to meet some of requirements described above, including highly crystalline CNT materials, low gas emission, and strong emitter adhesion. In this study, CNT emitters were fabricated by filtrating an aqueous suspension of highly crystalline thin multiwalled CNTs (Hanwha Nanotech Inc.) through a metal mesh. The metal mesh served as a support and fixture frame of CNT emitters. When 5 ml of the CNT suspension was engaged in filtration through a 400 mesh, the CNT layers were formed to be as thick as the mesh at the mesh openings. The CNT emitter sample of $1{\times}1\;cm^2$ in size was characteristic of the turn-on electrical field of 2.7 V/${\mu}m$ and the current density of 14.5 mA at 5.8 V/${\mu}m$ without noticeable deterioration of emitters. This study seems to provide a novel fabrication route to simply produce small-size CNT emitters for high current emission with reliability.

  • PDF

Characteristic Analysis of Electret Filters made by Electrospinning (전기방사를 통해 제조된 정전기 보유 필터의 표면전위 및 대전량에 따른 성능특성 분석)

  • Kim, Gil-Tae;Ahn, Young-Chull;Lee, Jae-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.820-824
    • /
    • 2008
  • Electret filter media are used in general ventilation filters, disposable respirators, vehicle cabin filters, vacuum cleaners and room air cleaners. There are basic mechanisms of interception, inertial impaction, diffusion, gravitational settling, electrostatic attraction by which an aerosol particle can be deposited onto a fiber in a filter. The ability of fine particle removal strongly depends on the electrostatic forces between particles and polarized fibers. Thus, the stability of the fiber polarization is a major factor in the reliability of electret filters. In this study, the electret filter is made by electrospinning process using Polystyrene which is dissolved by 5 : 5 of Tetrahydrofuran (THF) and Dimethylformamide (DMF). Also the electrical properties and the filtration performances of electrospun filter media are Quantitatively investigated. Electrical properties of electrospun filters have been studied on surface charge potential and surface charge density. Also the filtration performance of the electret filters are evaluated on collection efficiency. The surface charge potential and the surface charge density of electrospun PS filters are increased with increasing applied voltage and saturated at 30 kV of applied voltage. Also collection efficiency of electro spun filters is increased with increasing surface charge potential and surface charge density. But the surface charge potential is decreased by natural decay and it causes deterioration of particle collection efficiency.

A Study on the Preparation and Characterization of Carbon Fiber Composite Filter (탄소섬유 복합여과재의 제조 및 물성연구)

  • 이재춘;신경숙;이덕용;김병균;심선자;임연수;정윤중
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.9
    • /
    • pp.989-994
    • /
    • 1995
  • Rigid porous carbon fiber composites with the uniform pore size distribution were prepared by vacuum forming from water slurries containing carbonized PAN fibers, a phenolic resin and ceramic binders. The composites were designed to use for highly efficient carbon fiber filters for particulate filtration and gas adsorption. As the as-received carbon fibers of 1mm in length were milled to an approximate average length of 300${\mu}{\textrm}{m}$, modulus of rupture (MOR) of the composite filter was increased from 1MPa to the value larger than 5 MPa. Modulus of rupture (MOR) for the composite filter fabricated using the milled carbon fiber was increased from 5 MPa to 10 MPa as the carbonization temperature of the PAN fiber was raised from 90$0^{\circ}C$ to 140$0^{\circ}C$. The air permeability and an average pore size of the composite filter were increased from 40 to 270cc/min.$\textrm{cm}^2$ and from 35 to 80${\mu}{\textrm}{m}$, respectively, as the apparent porosity increased from 80 to 95%. It was shown that the MOR of the carbon fiber composite filter was dependent primarily on the average length of carbon fiber, carbonization temperature and the type of bonding materials.

  • PDF

Manufacturing and Filtration Performance of Microfiltration Metal Membrane Using Rolling Process (압연공정을 이용한 금속 정밀여과막의 제조 및 여과특성)

  • Kim, Jong-Oh;Min, Seok-Hong;Jung, Jong-Tae
    • Membrane Journal
    • /
    • v.17 no.3
    • /
    • pp.174-183
    • /
    • 2007
  • The manufacturing process of metal membrane made of only metal mesh and both metal mesh and powder with using rolling process have been studied. In the rolling of metal mesh, selected metal meshes were rolled with the reduction ratio of 10%, 20%, and 30%, respectively. Such rolling process resulted in the decrease of mesh pore size through reduction the cross sectional area of mesh and changing the diameter of mesh wires. Also, it enhanced the filtration ratio of rolled mesh which is almost same as the filtration ratio of upper grade unrolled mesh and the reliability of membrane by making pore size distribution become more uniform. In fabricating metal powder layer onto metal mesh, using PVA(polyvinyl alcohol) as a binder of powder, drying the metal powder layer at $100^{\circ}C$ for 1 hr, and sintering it at $1,000^{\circ}C$ for 3 hr in vacuum were to be optimum conditions for obtaining good quality of metal powder layer on metal mesh with high pore density but no crack. With additional rolling of metal powder layer on metal mesh with 30% reduction before sintering, metal membrane which filtration ratio is about $0.7{\mu}m$ has been successfully manufactured.

Fabrication of Silver Nanowire-Graphene Oxide Hybrid Transparent Conductive Thin Film with Improved Mechanical Stability (기계적 안정성이 향상된 은나노와이어-그래핀옥사이드 하이브리드 투명 전도성 박막의 제작)

  • Kim, Ju-Tae;Woo, Ju Yeon;Han, Chang-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.903-909
    • /
    • 2015
  • In this study, we used GO (graphene oxide) in order to enhance the adhesion between Ag NWs (nanowires) and substrates. By using a mixture solution of GO and Ag NW, a vacuum filtration process was used to fabricate a 50nm diameter thin film. Next, by using a light annealing process, the mechanical and electrical stability of Ag NW network was improved without any other treatment. The physical properties of the Ag NW - GO hybrid transparent conductive thin film was characterized in terms of a bending test, resistance and transmittance test, and nanoscale imaging using field-emission scanning electron microscopy.

Fabrication and Properties of Ceramic Candle Filter for Filtration System of Coal Gasification (석탄가스화 정제시스템용 세라믹 캔들 필터 제조 및 특성)

  • Han, In-Sub;Seo, Doo-Won;Hong, Ki-Seog;Kim, Se-Young;Yu, Ji-Hang;Woo, Sang-Kuk
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.844-847
    • /
    • 2009
  • 진공압출성형 공정을 이용하여 한쪽 끝단이 막힌 다공질 탄화규소 캔들 필터를 단일공정으로 제조하는 기술을 확립하였다. 캔들 필터 지지층의 특성 최적화를 위해 탄화규소 출발입자와 무기바인더의 첨가량 변화를 통해 기계적 특성과 기공크기 등의 분석을 수행하여 상용 캔들 필터의 수준에 대응할 수 있는 조합을 도출하였다. Mullite와 clay를 소결조제로 사용하고, $30{\mu}m$ 입도의 탄화규소 입자로 지지층을 제조한 경우, 30% 이상의 기공율을 보유하면서 50 MPa 이상의 상온 3점 굽힘강도를 나타낼 수 있는 조건이 확립됨에 따라 $125{\mu}m$ 입도의 탄화규소와 bi-modal로 사용할 경우, 상용제품의 특성을 상회하는 탄화규소 캔들 필터가 제조될 수 있음을 확인하였다.

  • PDF

Preparation of gold nanoparticle/single-walled carbon nanotube nanohybrids using biologically programmed peptide for application of flexible transparent conducting films

  • Yang, MinHo;Choi, Bong Gill
    • Carbon letters
    • /
    • v.20
    • /
    • pp.26-31
    • /
    • 2016
  • In this study, we report a general method for preparation of a one-dimensional (1D) arrangement of Au nanoparticles on single-walled carbon nanotubes (SWNTs) using biologically programmed peptides as structure-guiding 1D templates. The peptides were designed by the combination of glutamic acid (E), glycine (G), and phenylalanine (F) amino acids; peptides efficiently debundled and exfoliated the SWNTs for stability of the dispersion and guided the growth of the array of Au nanoparticles in a controllable manner. Moreover, we demonstrated the superior ability of 1D nanohybrids as flexible, transparent, and conducting materials. The highly stable dispersion of 1D nanohybrids in aqueous solution enabled the fabrication of flexible, transparent, and conductive nanohybrid films using vacuum filtration, resulting in good optical and electrical properties.

Microstructural Analysis of the Solidified Arsenic-containing Heavy Metal Sludge (비소를 함유한 중금속슬러지 고화체의 미세구조적 분석)

  • Kim, Yeong-Kwan;Jeong, Myoung-Sun
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.169-174
    • /
    • 1996
  • Microstructural analyses of synthetic arsenic-containing heavy metal sludges solidified with Portland cement were performed. Heavy metal sludges containing 0.04M of cadmium, chromium, copper, lead, and arsenic were prepared by sodium hydroxide precipitation and successive vacuum filtration. The sludges mixed with cement were cured for 14 days. The solidified sample was characterized by 1) leaching test, 2) scanning electron microscopy and 3) X-ray diffractometry. Of the metals tested, only Pb concentration in the leachate exceeded the Korean regulatory limit. The level of lead in the leachate was as high as 10 times the regulatory limit. X-ray analysis suggested that the metal hydroxides might be present in complex or impure crystalline phases.

  • PDF

A Study of the Technical Treatment within an Environmental Appetency for the Ballast Water

  • Nam, Chung-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.8
    • /
    • pp.1313-1323
    • /
    • 2004
  • In accordance with adoption of new convention for the control of ship's ballast water at the diplomatic conference held in London Feb, 2004, every country has to regulate the ballast water and deposit matters. When this Resolution comes into effect in 2009, all vessels engaged in international voyage must have ballast water control program, ballast water records, equipments which are suitable to the standard of exchange and performance for the ballast water. This study estimates objectively their performances, merits and demerits of the ballast water treatment technique and exchanging techniques for safe operation of ships. It is desirable to design an equipment to control the ballast water using the brush-type vacuum suction nonstop reverse cleaning system to overcome the clogging phenomenon and the direct disc filtering to maximize filtering area for the optimum process considering biological availabilities. It will be expected to protect against marine pollution and to maintain clean sea if it is secured to develop new ballast water treatment techniques. And it will also be expected to cope with the Resolution and each regulation of the developed countries from the ballast water.