• Title/Summary/Keyword: Vacuum Sealing

Search Result 103, Processing Time 0.025 seconds

Effects of Active Modified Atmosphere Packaging on the Storability of Fresh-cut Paprika (Active MAP가 파프리카 신선편이 저장성에 미치는 영향)

  • Choi, In-Lee;Yoo, Tae-Jong;Jung, Hyun-Jin;Kim, Il-Seop;Kang, Ho-Min;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.20 no.3
    • /
    • pp.227-232
    • /
    • 2011
  • The processing techniques are need to use the non-marketable paprika fruit because paprika that is difficult crop for cultivation and produced easily non-marketable fruits, such as physiological disorder fruit, malformed fruit, and small size fruit. This study was carried out to investigate the proper active modified atmosphere packaging (MAP) condition for enhancing the storability of fresh-cut paprika fruit. The fresh-cut paprika (cv 'Score', seminis) put into $7cm{\times}0.7cm$ size and packed them in 20 g bags. The active MAP and vacuum treated paprika fruits were packaged with LLDPE/Nylon, EVOH, Tie film, and injected partial pressures of $CO_2$ and $O_2$, and $N_2$ in the packages immediately after sealing to treat active MAP. The ratio of $CO_2$, $O_2$, and $N_2$ of active MAP conditions were 0 : 20 : 80 (air), 5 : 5 : 90, 30 : 10 : 60, 10 : 70 : 20 and vacuum treatment did not contain any gas. The passive packaging treated paprika packaged with $40{\mu}m$ ceramic film. After 7 days of storage at $9^{\circ}C$, the fresh weight decreased less than 2% in all treatments, and showed lower in 5 : 5 : 90 ($CO_2:O_2:N_2$) active-MAP treatment and higher in vacuum treatment than other treatments. The $CO_2$ and $O_2$ concentration in packages did not change remarkably in active-MA treatments except 30 : 10 : 60 active-MAP treatment that showed sharply decreased $O_2$, concentration and increased $CO_2$ concentration at $1^{st}$ day of storage at $9^{\circ}C$. The ethylene concentration in package was the highest in 30 : 10 : 60 active-MAP treatment and the lowest in the passive MAP treatment that packaged with gas permeable film during $9^{\circ}C$ storage for 7 days. The 30 : 10 : 60 active-MAP treatments were not proper condition to storage fresh-cut paprika. The visual quality was maintained higher in 0 : 20 : 80 (air), 5 : 5 : 90, and 10 : 70 : 20 active MAP treatments and passive MAP treatment than others and the firmness, off-odor, and electrolyte leakage was investigated at 7th day of storage at $9^{\circ}C$. The 5 : 5 : 90 and 10 : 70 : 20 active-MAP treatment showed higher firmness and lower off-odor than other treatments after $7^{th}$ day of storage at $9^{\circ}C$. In addition, the electrolyte leakage was reduced less than 20% at 0 : 20 : 80 (air), 5 : 5 : 90, 10 : 70 : 20, and passive MA treatments. Therefore, 10 : 70 : 20 ($CO_2:O_2:N_2$) and 0 : 20 : 80 (air) might be recommended for proper active MAP conditions.

Processing of Water Activity Controlled Fish Meat Paste by Dielectric Heating 2. Storage Stability of the Product (내부가열을 이용한 보장성어육(고등어) 연제품의 가공 및 제품개발에 관한 연구 2. 제품저장중의 품질변화)

  • LEE Kang-Ho;LEE Byeong-Ho;You Byeong-Jin;SUH Jae-Soo;JO Jin-Ho;JEONG In-Hak;JEA Yoi-Guan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.5
    • /
    • pp.361-367
    • /
    • 1984
  • In previous paper(Lee et al., 1984), preparation formula and processing conditions of the fish meat (mackerel) paste using dielectric heating were described, that included the proper shape and size of product and the conditions of dielectric heating, hot air dehydration, and heating with electric heater to yield the minimum expansion and case hardening during heating and to controll the final rater activity of 0.86 to 0.83 accompanying with a complete reduction of viable cells and good texture. In present study, changes in VBN, pH, total plate count, water activity, texture, the loss of available lysine, color indexes, TBA value, and the content of TI were determined to assess the quality stability and shelf-life of the product during the storage for 35 days at $5^{\circ}C\;and\;25^{\circ}C$, respectively. And the effect of vacuum sealing and hot water treatment before storage on the storage stability of product was also mentioned. As the product was vacuum packed in K-flex film bag, heat treated in boiling water for 6 minutes, and stored, water activity was maintained 0.86 to 0.84 for 35 days regardless of storage temperature, and the increase of total plate count was negligible in case of $5^{\circ}C$ storage while tended to gain slightly after 25 days at $25^{\circ}C$ storage. Changes in VBN was also minimum with an increase of 1.5 mg/100g at $5^{\circ}C$ and 7.0mg/100g at $25^{\circ}C$, but in case of unpacked sample, it was 24.5mg/100g at $5^{\circ}C$ and 42.4 mg/100g at $25^{\circ}C$ even after 7 days. In textural property hardness tended to increase after 28 days and folding test score was down to A or B from AA grade. The loss of available lysine was $7.5\%\;at\;5^{\circ}C$ and $17.0\%\;at\;25^{\circ}C$ but brown color was not deeply developed as the color index score indicated. TBA value was not increased at $5^{\circ}C$ while it tended to increase rapidly after 30 days at $25^{\circ}C$. Changes in TI content was not obvious except that it showed a tendency of increase at the end of storage as well as in the change of lysine and TBA value. It is concluded from the results that the quality of the product, pasteurized and water activity controlled by dielectric heating, and vacuum packed in K-flex film would be stable for more than 35 days at $5^{\circ}C$ and at least 25 days even at room temperature.

  • PDF

Effect of Package Size and Pasteurization Temperature on the Quality of Sous Vide Processed Spinach (Sous Vide 가공 시금치의 품질에 미치는 포장단위 및 살균온도의 영향)

  • 장재덕;김기태;이동선
    • Food Science and Preservation
    • /
    • v.11 no.2
    • /
    • pp.195-200
    • /
    • 2004
  • Microbial lethal value and nutrient retention of sous vide processed spinach were evaluated with mathematical model prediction and experimental trial for different package sizes and pasteurization temperatures. The package size covers 500 g, 1 kg and 2 kg, while the pasteurization temperature includes 80, 90 and 97$^{\circ}C$. The basic process scheme consists of filling blanched spinach into barrier plastic film pouch, sealing under vacuum, pasteurization in hot water with over pressure and final cooling to 3$^{\circ}C$. Pasteurization condition was designed based on attainment of 6 decimal inactivation of Listeria monocytogenes at geometric center of the pouch package by heating cycle, which was determined by general method. Heat penetration property of the package and thermal destruction kinetics were combined to estimate the retention of ascorbic acid and chlorophyll. Smaller packages with shorter pasteurization time gave better nutrient retention, physical and chemical qualities. Larger package size was estimated and confirmed experimentally to give higher pasteurization value at center, lower ascorbic acid and chlorophyll contents caused by longer heat process time. Lower pasteurization temperature with longer process time was predicted to give lower pasteurization value at center and lower ascorbic acid, while chlorophyll content was affected little by the temperature. Experimental trial showed better retention of ascorbic acid and chlorophyll for smaller package and higher pasteurization temperature with shorter heating time. The beneficial effect of smaller package and higher pasteurization temperature was also observed in texture, color retention and drip production.