• Title/Summary/Keyword: Vacuum Level Control

Search Result 88, Processing Time 0.043 seconds

Fabrication and Performance of $Bi_{0.5}Sb_{1.5}Te_{3}/Bi_{2}Te_{2.4}Se_{0.6}$ Thin Film Thermoelectric Generators ($Bi_{0.5}Sb_{1.5}Te_{3}/Bi_{2}Te_{2.4}Se_{0.6}$계 박막형 열전발전 소자의 제작과 작동 특성)

  • Kim Il-Ho;Jang Kyung-Wook
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.2
    • /
    • pp.180-185
    • /
    • 2006
  • Microwatt power level at relatively high voltage(order of volt) was produced by $Bi_{0.5}Sb_{1.5}Te_{3}/Bi_{2}Te_{2.4}Se_{0.6}$ thin film thermoelectric generators, and maximum output power varied with temperature difference in the square-law relation. Output voltage and current were possible to control by changing the way of electrical connection as well as the number of stacking plate-modules. Variation of open circuit voltage and short circuit current with temperature difference showed a linear relationship. There were, however, some differences in variations; open circuit voltage were dependent on the number of plate-module when connected in series, but it was not for parallel connection. On the other hand, short circuit current showed the opposite behavior to the case of open circuit current.

Carrier Transport of Quantum Dot LED with Low-Work Function PEIE Polymer

  • Lee, Kyu Seung;Son, Dong Ick;Son, Suyeon;Shin, Dong Heon;Bae, Sukang;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.432.2-432.2
    • /
    • 2014
  • Recently, colloidal core/shell type quantum dots lighting-emitting diodes (QDLEDs) have been extensively studied and developed for the future of optoelectronic applications. In the work, we fabricate an inverted CdSe/ZnS quantum dot (QD) based light-emitting diodes (QDLED)[1]. In order to reduce work function of indium tin oxide (ITO) electrode for inverted structure, a very thin (<10 nm) polyethylenimine ethoxylated (PEIE) is used as surface modifier[2] instead of conventional metal oxide electron injection layer. The PEIE layer substantially reduces the work function of ITO electrodes which is estimated to be 3.08 eV by ultraviolet photoemission spectroscopy (UPS). From transmission electron microscopy (TEM) study, CdSe/ZnS QDs are uniformly distributed and formed by a monolayer on PEIE layer. In this inverted QD LED, two kinds of hybrid organic materials, [poly (9,9-di-n-octyl-fluorene-alt-benzothiadiazolo)(F8BT) + poly(N,N'-bis (4-butylphenyl)-N,N'-bis(phenyl)benzidine (poly-TPD)] and [4,4'-N,N'-dicarbazole-biphenyl (CBP) + poly-TPD], were adopted as hole transport layer having high highest occupied molecular orbital (HOMO) level for improving hole transport ability. At a low-operating voltage of 8 V, the device emits orange and red spectral radiation with high brightness up to 2450 and 1420 cd/m2, and luminance efficacy of 1.4 cd/A and 0.89 cd/A, respectively, at 7 V applied bias. Also, the carrier transport mechanisms for the QD LEDs are described by using several models to fit the experimental I-V data.

  • PDF

A Preliminary Research on Optical In-Situ Monitoring of RF Plasma Induced Ion Current Using Optical Plasma Monitoring System (OPMS)

  • Kim, Hye-Jeong;Lee, Jun-Yong;Chun, Sang-Hyun;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.523-523
    • /
    • 2012
  • As the wafer geometric requirements continuously complicated and minutes in tens of nanometers, the expectation of real-time add-on sensors for in-situ plasma process monitoring is rapidly increasing. Various industry applications, utilizing plasma impedance monitor (PIM) and optical emission spectroscopy (OES), on etch end point detection, etch chemistry investigation, health monitoring, fault detection and classification, and advanced process control are good examples. However, process monitoring in semiconductor manufacturing industry requires non-invasiveness. The hypothesis behind the optical monitoring of plasma induced ion current is for the monitoring of plasma induced charging damage in non-invasive optical way. In plasma dielectric via etching, the bombardment of reactive ions on exposed conductor patterns may induce electrical current. Induced electrical charge can further flow down to device level, and accumulated charges in the consecutive plasma processes during back-end metallization can create plasma induced charging damage to shift the threshold voltage of device. As a preliminary research for the hypothesis, we performed two phases experiment to measure the plasma induced current in etch environmental condition. We fabricated electrical test circuits to convert induced current to flickering frequency of LED output, and the flickering frequency was measured by high speed optical plasma monitoring system (OPMS) in 10 kHz. Current-frequency calibration was done in offline by applying stepwise current increase while LED flickering was measured. Once the performance of the test circuits was evaluated, a metal pad for collecting ion bombardment during plasma etch condition was placed inside etch chamber, and the LED output frequency was measured in real-time. It was successful to acquire high speed optical emission data acquisition in 10 kHz. Offline measurement with the test circuitry was satisfactory, and we are continuously investigating the potential of real-time in-situ plasma induce current measurement via OPMS.

  • PDF

Application of Graphene in Photonic Integrated Circuits

  • Kim, Jin-Tae;Choe, Seong-Yul;Choe, Chun-Gi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.196-196
    • /
    • 2012
  • Graphene, two-dimensional one-atom-thick planar sheet of carbon atoms densely packed in a honeycomb crystal lattice, has grabbled appreciable attention due to its extraordinary mechanical, thermal, electrical, and optical properties. Based on the graphene's high carrier mobility, high frequency graphene field effect transistors have been developed. Graphene is useful for photonic components as well as for the applications in electronic devices. Graphene's unique optical properties allowed us to develop ultra wide-bandwidth optical modulator, photo-detector, and broadband polarizer. Graphene can support SPP-like surface wave because it is considered as a two-dimensional metal-like systems. The SPPs are associated with the coupling between collective oscillation of free electrons in the metal and electromagnetic waves. The charged free carriers in the graphene contribute to support the surface waves at the graphene-dielectric interface by coupling to the electromagnetic wave. In addition, graphene can control the surface waves because its charge carrier density is tunable by means of a chemical doping method, varying the Fermi level by applying gate bias voltage, and/or applying magnetic field. As an extended application of graphene in photonics, we investigated the characteristics of the graphene-based plasmonic waveguide for optical signal transmission. The graphene strips embedded in a dielectric are served as a high-frequency optical signal guiding medium. The TM polarization wave is transmitted 6 mm-long graphene waveguide with the averaged extinction ratio of 19 dB at the telecom wavelength of $1.31{\mu}m$. 2.5 Gbps data transmission was successfully accomplished with the graphene waveguide. Based on these experimental results, we concluded that the graphene-based plasmonic waveguide can be exploited further for development of next-generation integrated photonic circuits on a chip.

  • PDF

Effect of in-Plane Magnetic Field on Rashba Spin-Orbit Interaction

  • Choi, Won Young;Kwon, Jae Hyun;Chang, Joonyeon;Han, Suk Hee;Koo, Hyun Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.394-394
    • /
    • 2013
  • The spin-orbit interaction has received great attention in the field of spintronics, because of its property and applicability. For instance, the spin-orbit interaction induces spin precession which is the key element of spin transistor proposed by Datta and Das, since frequency of precession can be controlled by electric field. The spin-orbit interaction is classified according to its origin, Dresselhaus and Rashba spin-orbit interaction. In particular, the Rashba spin-orbit interaction is induced by inversion asymmetry of quantum well structure and the slope of conduction band represents the strength of Rashba spin-orbit interaction. The strength of spin-orbit interaction is experimentally obtained from the Shubnikov de Hass (SdH) oscillation. The SdH oscillation is resistance change of channel for perpendicular magnetic field as a result of Zeeman spin splitting of Landau level, quantization of cyclotron motion by applied magnetic field. The frequency of oscillation is different for spin up and down due to the Rashba spin-orbit interaction. Consequently, the SdH oscillation shows the beat patterns. In many research studies, the spin-orbit interaction was treated as a tool for electrical manipulation of spin. On the other hands, it can be considered that the Rashba field, effective magnetic field induced by Rashba effect, may interact with external magnetic field. In order to investigate this issue, we utilized InAs quantum well layer, sandwiched by InGaAs/InAlAs as cladding layer. Then, the SdH oscillation was observed with tilted magnetic field in y-z plane. The y-component (longitudinal term) of applied magnetic field will interact with the Rashba field and the z-component (perpendicular term) will induce the Zeeman effect. As a result, the strength of spin-orbit interaction was increased (decreased), when applied magnetic field is parallel (anti-parallel) to the Rashba field. We found a possibility to control the spin precession with magnetic field.

  • PDF

Improvement in the bias stability of zinc oxide thin-film transistors using an $O_2$ plasma-treated silicon nitride insulator

  • Kim, Ung-Seon;Mun, Yeon-Geon;Gwon, Tae-Seok;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.180-180
    • /
    • 2010
  • Thin film transistors (TFTs) based on oxide semiconductors have emerged as a promising technology, particularly for active-matrix TFT-based backplanes. Currently, an amorphous oxide semiconductor, such as InGaZnO, has been adopted as the channel layer due to its higher electron mobility. However, accurate and repeatable control of this complex material in mass production is not easy. Therefore, simpler polycrystalline materials, such as ZnO and $SnO_2$, remain possible candidates as the channel layer. Inparticular, ZnO-based TFTs have attracted considerable attention, because of their superior properties that include wide bandgap (3.37eV), transparency, and high field effect mobility when compared with conventional amorphous silicon and polycrystalline silicon TFTs. There are some technical challenges to overcome to achieve manufacturability of ZnO-based TFTs. One of the problems, the stability of ZnO-based TFTs, is as yet unsolved since ZnO-based TFTs usually contain defects in the ZnO channel layer and deep level defects in the channel/dielectric interface that cause problems in device operation. The quality of the interface between the channel and dielectric plays a crucial role in transistor performance, and several insulators have been reported that reduce the number of defects in the channel and the interfacial charge trap defects. Additionally, ZnO TFTs using a high quality interface fabricated by a two step atomic layer deposition (ALD) process showed improvement in device performance In this study, we report the fabrication of high performance ZnO TFTs with a $Si_3N_4$ gate insulator treated using plasma. The interface treatment using electron cyclotron resonance (ECR) $O_2$ plasma improves the interface quality by lowering the interface trap density. This process can be easily adapted for industrial applications because the device structure and fabrication process in this paper are compatible with those of a-Si TFTs.

  • PDF

New Evaluation of Initial Growth Mechanisms of Hydroxyapatite on Self-assembled Collagen Nanofibrils by Using ToF-SIMS and AFM Techniques

  • Park, Young-Jae;Choi, Gyu-Jin;Lee, Tae-Geol;Lee, Won-Jong;Moon, Dae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.397-397
    • /
    • 2010
  • Bone is considered as hierarchically organized biocomposites of organic (collagen) and inorganic (hydroxyapatite) materials. The precise structural dependence between hydroxyapatite (HAp, $Ca_{10}(PO_4)_6(OH)_2)$ crystals and collagen fibril is critical to unique characteristics of bone. To meet those conditions and obtain optimal properties, it is essential to understand and control the initial growth mechanisms of hydroxyapatite at the molecular level, such as other nano-structured materials. In this study, collagen fibrils were prepared by adsorbing native type I collagen molecules onto hydrophobic surface. Hydrophobicity was introduced on the Si wafer surface by using PECVD (plasma enhanced chemical vapor deposition) method and cyclohexane as a precursor. Biomimetic nucleation and growth of HAp on the self-assembled collagen nanofibrils were occurred through incubation of the sample in SBF (simulated body fluid). Chemical and morphological evolution of HAp nanocrystals was investigated by surface-sensitive analytical techniques such as ToF-SIMS (Time-of-Flight Secondary Ion Mass Spectrometry) and AFM (Atomic Force Microscopy) in the early growth stages (< 24 hrs). The very initial stages (< 12 hrs) of mineralization could be clearly demonstrated by ToF-SIMS chemical mapping of surface. In addition to ToF-SIMS and AFM measurement, scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction analysis were conducted to characterize the HAp layer in the late stages. This study is of great importance in the growth of real bone-like materials with a structure analogous to that of natural bones and the development of biomimetic nanomaterials.

  • PDF

Unusual ALD Behaviors in Functional Oxide Films for Semiconductor Memories

  • Hwang, Cheol Seong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.77.1-77.1
    • /
    • 2013
  • Atomic layer deposition (ALD) is known for its self-limiting reaction, which offers atomic-level controllability of the growth of thin films for a wide range of applications. The self-limiting mechanism leads to very useful properties, such as excellent uniformity over a large area and superior conformality on complex structures. These unique features of ALD provide promising opportunities for future electronics. Although the ALD of Al2O3 film (using trimethyl-aluminum and water as a metal precursor and oxygen source, respectively) can be regarded as a representative example of an ideal ALD based on the completely self-limiting reaction, there are many cases deviating from the ideal ALD reaction in recently developed ALD processes. The nonconventional aspects of the ALD reactions may strongly influence the various properties of the functional materials grown by ALD, and the lack of comprehension of these aspects has made ALD difficult to control. In this respect, several dominant factors that complicate ALD reactions, including the types of metal precursors, non-metal precursors (oxygen sources or reducing agents), and substrates, will be discussed in this presentation. Several functional materials for future electronics, such as higher-k dielectrics (TiO2, SrTiO3) for DRAM application, and resistive switching materials (NiO) for RRAM application, will be addressed in this talk. Unwanted supply of oxygen atoms from the substrate or other component oxide to the incoming precursors during the precursor pulse step, and outward diffusion of substrate atoms to the growing film surface even during the steady-state growth influenced the growth, crystal structure, and properties of the various films.

  • PDF

A Study on the Purpose-in-Life Level in Patients with Traumatic Brain Injury (외상성 뇌 손상 환자의 삶의 목적 수준에 관한 연구)

  • Rho, Seung-Ho;Kim, Sung-Woo
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.7 no.2
    • /
    • pp.184-195
    • /
    • 1999
  • Objectives : As traumatic brain injury(TBI) leaves chronic sequelae in mind and body, the injured patients should rectify the meaning and object that they have pursued in their lives and set up a new purpose in life that they may make the rest of their lives meaningful. This study was designed to investigate the purpose and quality of life levels and the influence of demographic and clinical variables on the levels in the patients with TBI, and to be of some help to their rehabilitation. Methods : In order to assess the purpose in life(PIL) and the quality of life(QOL) levels, Purpose-in-Life Test, Sickness Impact Profile, Quality of Life Index, Head Injury Symptom Ckecklist, and Neurobehavioral Rating Scale were administered to the subjects. The subjects were thirty-two patients with TBI and the same numbered normal controls. The TBI group was composed of 16 to 65 year-aged patients who had received mild or severe TBI at least 12 months before, and the controls were siblings or friends of the patients whose age, sex, and educational level were similar to them. Results : 1) The PIL and QOL levels of the patients with TBI remained significantly lower than that of control group after their symptoms of injury were stabilized(p<.01, p<.01). 2) The mean PIL score of TBI group was $58.8{\pm}23.2$, which was to be regarded as the level of existential vacuum. 3) The PIL level of TBI group was significantly correlated with the QOL level(p <.01). 4) The subgroup with lower PIL level in patients with TBI has significantly higher rate of female than that with higher PIL(p<.05), the PIL level of female patients was significantly lower than that of male patients(p <.05). 5) The significant differences in PIL levels were not found, in which comparison was performed between each pair of subgroups of patients with TBI divided by severity of injury(mild vs severe), marital status(married vs unmarried), and occupational status prior to injury(employed vs unemployed). Conclusion : The PIL of patients with TBI still remained the level of existential vacuum after symptoms of sequelae had been stabilized, The QOL level was also extremely low, and as the PIL level was low the QOL was also low. The demographic and clinical variables except sex did not have influence on the PIL level in brain-injured patients. It is suggested that every patient should admit their mental and physical limitations caused by brain injury and revise their purpose in life for successful rehabilitation.

  • PDF

Development and Verification of Thermal Control Subsystem for High Resolution Electro-Optical Camera System, EOS-D Ver.1.0 (고해상도 전자광학카메라 EOS-D Ver.1.0의 열제어계 개발 및 검증)

  • Chang, Jin-Soo;Kim, Jong-Un;Kang, Myung-Seok;Yang, Seung-Uk;Kim, Ee-Eul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.11
    • /
    • pp.921-930
    • /
    • 2013
  • Satrec Initiative successfully developed and verified a high-resolution electro-optical camera system, EOS-D Ver.1.0. We designed this system to give improved spatial and radiometric resolution compared with EOS-C series systems. The thermal control subsystem (TCS) of the EOS-D Ver.1.0 uses heaters to meet the opto-mechanical requirements during in-orbit operation and uses different thermal coatings and multi-layer insulation (MLI) blankets to minimize the heater power consumption. Also, we designed and verified a refocusing mechanism to compensate the misalignment caused by moisture desorption from the metering structure. We verified the design margin and workmanship by conducting the qualification level thermal vacuum test. We also performed the verification of thermal math model (TMM) by comparing with thermal balance test results. As a result, we concluded that it faithfully represents the thermal characteristics of the EOS-D Ver.1.0.