• Title/Summary/Keyword: Vacuum Impregnation

Search Result 67, Processing Time 0.026 seconds

Fabrication and Characterization of Carbon Nanotube/Carbon Fiber/Polycarbonate Multiscale Hybrid Composites

  • Cho, Beom-Gon;Hwang, Sang-Ha;Park, Young-Bin
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.269-275
    • /
    • 2016
  • Multiscale hybrid composites, which consist of polymeric resins, microscale fibers and nanoscale reinforcements, have drawn significant attention in the field of advanced, high-performance materials. Despite their advantages, multiscale hybrid composites show challenges associated with nanomaterial dispersion, viscosity, interfacial bonding and load transfer, and orientation control. In this paper, carbon nanotube(CNT)/carbon fiber(CF)/polycarbonate(PC) multiscale hybrid composite were fabricated by a solution process to overcome the difficulties associated with controlling the melt viscosity of thermoplastic resins. The dependence of CNT loading was studied by varying the method to add CNTs, i.e., impregnation of CF with CNT/PC/solvent solution and impregnation of CNT-coated CF with PC/solvent solution. In addition, hybrid composites were fabricated through surfactant-aided CNT dispersion followed by vacuum filtration. The morphologies of the surfaces of hybrid composites, as analyzed by scanning electron microscopy, revealed the quality of PC impregnation depends on the processing method. Dynamic mechanical analysis was performed to evaluate their mechanical performance. It was analyzed that if the position of the value of tan ${\delta}$ is closer to the ideal line, the adhesion between polymer and carbon fiber is stronger. The effect of mechanical interlocking has a great influence on the dynamic mechanical properties of the composites with CNT-coated CF, which indicates that coating CF with CNTs is a suitable method to fabricate CNT/CF/PC hybrid composites.

Study on the Hybridization of Polymer-macromers for the Dimensional Stabilization of Woody Materials (치수안정화를 위한 목질재료의 고분자 하이브리드화에 관한 연구)

  • Lim, Kie-Pyo;Cho, Chong-Su;Kim, Ik-Joo;Na, Eun-Sun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.1-9
    • /
    • 1995
  • This study was carried out to experiment the dimensional stabilization of woods of red pine (Pinus densiflora S. et Z.) and sugi(Cryptomeria japonica D. Don) by vacuum impregnation of polyehtylene glycols(PEG) with mo. wt. 200, 400, 600, 1000; polypropylene glycols (PPG) with mo. wt. 425,725 ; PEG-acryloylates, and PPG-acryloylates synthesized, and then by water soaking. The results obtained are as follows: 1. The density of sapwood and heartwood was different from each other in both species. 2. The PEG and PEG-macromers with lower molecular weight by impregnation has increased the density of wood specimens more higher, thereby caused their higher volume expansion, and those with higher molecular weight than 600 has tended to down their density increment. 3. Before and after water soaking, the density decrease of specimen impregnated was high in woods impregnated with simple PEG and PPG, while lower in specimens impregnated with PEG-macromers and PPG-macromers. 4. So PEG-macromer was expected to hold the original dimension of decayed wood for antiques, but it was necessary to develop another penetration method as well as aqueous solvent.

  • PDF

A Study on Insulation Properties of Global VPI Type Generator through Replacement of Stator Windings

  • Kong, Taesik;Kim, Heedong;Lee, Sooho;Park, Jaehyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.2
    • /
    • pp.113-117
    • /
    • 2017
  • As the competition in the manufacturing market for small and medium sized generators is intensifying, there is increasing pressure to reduce production cost. Manufacturing the generator stator windings with global vacuum pressure impregnation (GVPI) is a very effective way to reduce costs. However, the stator winding has a fatal disadvantage in that the insulation wears due to vibration in the slot. KEPRI (KEPCO Research Institute) conducted insulation diagnosis for three generators in KOMIPO (Korea Midland Power Co., Ltd.) which were manufactured by GVPI and operated for about 17 years. Insulation diagnosis showed that deterioration of insulation has progressed significantly. Therefore, KEPRI recommended replacing the stator windings of all three generators. In this paper, the insulation properties of the generator stator winding with global GVPI are described by comparing and analyzing the insulation diagnosis results and visual inspection for stator windings.

A Study on Insulation Property of VPI Type Generator Stator Winding Through the Case Analysis of Insulation Breakdown (절연파괴 사례분석을 통한 진공함침 방식 발전기 고정자권선의 절연특성 연구)

  • Kong, Tae-Sik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.311-316
    • /
    • 2010
  • According to increase of combined cycle power generation, the manufacturing market of gas turbine generator has become more competitive, so there is high pressure on the manufacturer to reduce generator price. Global VPI(vacuum pressure impregnation) method is effective to save the production cost and time for manufacturing stator windings, but it has an abrasion problem by vibration between stator windings and slots. This paper presents the insulation breakdown case, which is for VPI type generator during high voltage insulation tests, and also shows the cause analysis, repair works as well as reliability test. the purpose of this paper is to understand the insulation properties of VPI type generator and to know prevention of insulation weakness.

Manufacturing Characteristics of Wood ceramics from Thinned Small Logs (I) - Resin Impregnation Rate and Bending Strength -

  • Oh, Seung-Won;Hirose, Takashi;Okabe, Toshihiro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.51-55
    • /
    • 2000
  • The woodceramics which are new porous carbon materials were obtained by carbonizing from thinned small log of Aomori HIBA (Thujopsis dolabrata S. et. Z. var. hondae M.) impregnated with phenol resin in a vacuum furnace. During the carbonization process, the resin changes into glassy carbon, which has superior property. The resin impregnation rate and bending strength depend on the types of board and density. In this paper, the manufacturing method of woodceramics made from thinned small logs of Aomori HIBA was introduced and some properties were examined.

  • PDF

Evaluation of Binder jetting 3D Printed Specimens Using Vacuum Impregnation (진공함침을 적용한 바인더젯 3D 프린팅 출력물의 성능 평가)

  • Park, Kwang-Min;Park, Su-Hyeon;Lee, Jun;Lee, Bong-Chun;Roh, Young-Sook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.103-110
    • /
    • 2020
  • This study examined the applicability of the vacuum impregnation post-processing to enhance the strength of binder jet 3D printed output. In addition, permeability, bulk density, and compressive strength of 10 mm, 20 mm, 30 mm, and 40 mm cubic specimens were examined to check the strength limit depending on the 3D prined output size. In result, as the maximum pressure increased, the post-processing storage solution permeated to the inside of the 3D printed sample and thus the permeation area ratio was improved. The compressive strength and the permeation area indicate the correlation between the exponential function of the adjusted R-square factor 0.992. In addition, the bulk density was increased, which can be inferred as the post-processing solution permeated to the inside. In conclusion, in order to enhance the compressive strength of the binder jet 3D printed output, it is essential to permeate the post-processing solution to the inside of the output, and vacuum impregnation can be proposed as an effective method.

Conservation of Waterlogged Wooden Finds Excavated in Wet-Site (저습지 출토 목재유물의 보존과 현황)

  • Yi, Yong Hee
    • Journal of Conservation Science
    • /
    • v.6 no.2 s.8
    • /
    • pp.126-140
    • /
    • 1997
  • There were some cases in the past that waterlogged wooden finds were neglected and damaged severely because adequate methods of conservation processing could not be found. However, since a wooden ship unearthed in Anapji of Kyongju was processed by poly(ethylene glycol) (PEG) impregnation method in 1975, most of waterlogged wooden finds have been processed by diverse scientific methods. Most commonly-used conservation processing methods of waterlogged wooden finds in Korea are PEG impregnation method, alcohol-ether-resin method and vacuum freeze-drying method. New methods developed recently in Europe and Japan such as sucrose method, sugar-alcohol method and higher alcohol method are also being studied here. The most important task in conservation processing of waterlogged wood is to find good impregnation materials suitable to Korean climate and environments and develop their application methods. For efficient conservation processing, it is important to know the natures of finds and impregnation materials and relation between impregnation and drying condition. To achieve it, many experiments and studies are needed.

  • PDF

Conservation of Excavated Lacquer-wares for using artificially water-soaked Lacquer-wares (인공수침 칠기를 이용한 고대칠기 보존연구)

  • Kim, Soo-Chul
    • Journal of Conservation Science
    • /
    • v.21
    • /
    • pp.49-58
    • /
    • 2007
  • Among the treatment results of test samples of the antique lacquer-ware, the treatment with PEG#3,350 40% solution displayed excellent effect with low shrinkage ratio; in weight gain the treatment with Sucrose 19%+Glycerin 1%(t-butanol 5% in water) solution showed consistent increase. However during the impregnation process of Sucrose, the weight of the testing samples decreased by dehydration because the inner part of the test samples and the treatment solution showed concentration gradient. Therefore, we concluded longer impregnation period should be necessary to prevent dehydration. Since both higher and lower molecular weight treatment chemicals could penetrate into the wood of the lacquer-ware, air drying and conditioning after impregnation treatment with high concentration chemicals would be possible, as well as vacuum freeze-drying.

  • PDF

Vacuum Pressure Treatment of Water-Soluble Melamine Resin Impregnation for Improvement of Mechanical Property, Abrasion Resistance and Incombustibility on Softwood (목재의 기계적 성질, 내마모성 및 난연성 개선을 위한 진공가압 멜라민 수지함침처리)

  • Oh, Seung-Won;Park, Hee Jun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.792-797
    • /
    • 2015
  • In this study, three softwood species were treated with water-soluble melamine resin by different concentration and treatment time under vacuum pressure for improving mechanical property, abrasion resistance, and incombustibility. After the treatment, a compreg was manufactured and then evaluated on physical properties. Additionally, incombustibility of compreg was determined by comparing with a wood that was treated by spraying a water-soluble fire retardant on surface. As concentration of resin increased, bending strength and Brinell hardness increased as well as abrasion resistance, but there was no correlation on treatment and mechanical properties by treatment time. The wood impregnated by water-soluble melamine resin under vacuum pressure showed better incombustibility than that of a water-soluble fire retardant sprayed wood. Therefore, this treatment could be used for improving incombustibility of wood.

Friction-wear Characterization and Fabrication of Carbon/Carbon Composite via Mesophase Pitch (메조페이스 핏치계 탄소/탄소 복합재료의 제조 및 마찰 마모특성)

  • 박종규;이진용;하헌승;임연수;이승구
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.9
    • /
    • pp.974-980
    • /
    • 1998
  • This study is concerned with the production of carbon fiber reinforced carbon(C/C) with polyaromatic mesophase pitch as matrix precursor and with the investigation of friction-wear characteristics in ambient air using a constant speed type of friction tester. The main problem in using the polyaromatic mesophase as the matrix precursor is the high viscosity which may limit the complete impregnation of the fiber preform in the vacuum. To solve these problems two dimensional carbon fiber fabrics were infiltrated with meso-phase pitch in the pitch impregnator. After the impregnation and the heat treatment process. C/C com-posites were characterized by density porosity to monitor the influence of high pressure and temperature. It showed that the bulk density was increased and the apparent porosity and the density increasing rate was reduced as repeating the impregnation the carbonization and the heat treatment. The friction-wear charac-teristics of C/C composites were investigated by measuring the average friction coefficient and the specific wear rate as functions friction speed and friction pressure using a constant speed type of friction tester. C/C composite4s showed the average friction coefficient to be reduced as increasing the friction speed and the friction pressure.

  • PDF