• Title/Summary/Keyword: Vacuum Environment

Search Result 518, Processing Time 0.036 seconds

The Consolidation Characteristics of Soft Clay by Stepped Vacuum Pressure in Individual Vacuum Method (개별진공압밀공법이 적용된 점성토의 단계진공압에 따른 압밀특성)

  • Han, Sang-Jae;Kim, Jong-Seok;Kim, Byung-Il;Kim, Do-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.11
    • /
    • pp.41-52
    • /
    • 2012
  • Suction drain method can directly apply vacuum pressure to the soft ground through vertical drains so it can make hardening zones around them. These hardening zones make steeply lower the discharge efficiency of the pore water with decreasing permeability. This paper considered a stepped vacuum pressure to minimize a hardening zone which is one of the important parameters that can decrease discharge efficiency. A series of laboratory tests were conducted in order to examine the effect of the hardening zones and to evaluate their effects to the ground improvements with varying durations which applied stepped vacuum pressures(-20kPa, -40kPa, -60kPa and -80kPa) with Busan marine clay. According to strength(CPT), water content test and theoretical investigation indicate a size of the hardening zone within 7cm and the decreasing ratio of permeability about 2.0~4.0. Also, the total settlements are larger for the stepped vacuum pressure than the instant vacuum loading. The application time with vacuum pressure is determined considering the geotechnical properties of the interested clays. Results of numerical analysis show that consolidation behavior is appropriate to measurement for considering hardening zones.

Development of the Most Optimized Ionizer for Reduction in the Atmospheric Pressure and Inert Gas Area (감압대기 및 불활성가스 분위기에서 적합한 정전기 제거장치의 개발)

  • Lee, Dong Hoon;Jeong, Phil Hoon;Lee, Su Hwan;Kim, Sanghyo
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.42-46
    • /
    • 2016
  • In LCD Display or semiconductor manufacturing processes, the anti-static technology of glass substrates and wafers becomes one of the most difficult issues which influence the yield of the semiconductor manufacturing. In order to overcome the problems of wafer surface contamination various issues such as ionization in decompressed vacuum and inactive gas(i.e. $N_2$ gas, Ar gas, etc.) environment should be considered. Soft X ray radiation is adequate in air and $O_2$ gas at atmospheric pressure while UV radiation is effective in $N_2$ gas Ar gas and at reduced pressure. At this point of view, the "vacuum ultraviolet ray ionization" is one of the most suitable methods for static elimination. The vacuum ultraviolet can be categorized according to a short wavelength whose value is from 100nm to 200nm. this is also called as an Extreme Ultraviolet. Most of these vacuum ultraviolet is absorbed in various substances including the air in the atmosphere. It is absorbed substances become to transit or expose the electrons, then the ionization is initially activated. In this study, static eliminator based on the vacuum ultraviolet ray under the above mentioned environment was tested and the results show how the ionization performance based on vacuum ultraviolet ray can be optimized. These vacuum ultraviolet ray performs better in extreme atmosphere than an ordinary atmospheric environment. Neutralization capability, therefore, shows its maximum value at $10^{-1}{\sim}10^{-3}$ Torr pressure level, and than starts degrading as pressure is gradually reduced. Neutralization capability at this peak point is higher than that at reduced pressure about $10^4$ times on the atmospheric pressure and by about $10^3$ times on the inactive gas. The introductions of these technology make it possible to perfectly overcome problems caused by static electricity and to manufacture ULSI devices and LCD with high reliability.

Concept Design of Vibration Isolation System for Development of Optical Payload of Satellite (위성광학탑재체 개발을 위한 나노급 방진장치 개념 설계)

  • Lee, Sang-Hoon;Cho, Hyok-Jin;Seo, Hee-Jun;Kim, Young-Key;Moon, Guee-Won;Moon, Sang-Moo;Kim, Hong-Bea
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.949-952
    • /
    • 2005
  • According to the national space program in Korea, is satellites will be launch into space up to 2015. Especially, KARI is going to develope of its own a high resolution camera of less than 1m to be mounted on next Multipurpose Satellite. When performing testing of large spacecraft or hardware that will be launched into orbit, it is necessary to conduct a testing with space-simulated environment. To achieve this requirement, thermal vacuum chamber is generally used. KARI has been developed a very Large Thermal Vacuum Chamber(LTVC) from 2003 to accomodate future space program, such as KOMPSAT, COMS, and Launch vehicles. This new facility will be used to qualify the first self developed High Resolution Camera, which will be loaded on KOMPSAT-3. To perform an optical test for space camera, it is necessary to provide vibration free environment. Thus the vibration responses on the optical table due to external vibration should be minimized by using a special isolation system. In this paper, we propose the concept design of vibration isolation system for the development of the high resolution camera.

  • PDF

Analysis on the Pressure Rise Characteristics Caused by Movement of Linear and Rotary Stages using Air Bearings in High Vacuum Environment (고진공 환경용 공기베어링이 적용된 직선, 회전스테이지의 구동에 의한 압력증가 특성분석)

  • Kim, Gyung-Ho;Park, Chun-Hong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.112-118
    • /
    • 2009
  • A pressure rise is generated while air bearing stages are moving in high vacuum environment. This study analyzed this pressure rise phenomenon theoretically and verified it experimentally using two different kinds of stages - linear and rotary air bearing stages. Results indicate that the pressure rise was caused by additional leakage resulting from stage velocity, along with adsorption and outgassing of gas molecules from the guide rail surface. Though tilting of the stage due to acceleration and deceleration reached several micrometers, it had a negligible effect on pressure rise because the tilting time was very short. Therefore, a rotary air bearing stage showed much less pressure rise than a linear stage because the rotary stage theoretically has nothing to do with the above causes. Additional leakage caused by stage velocity was inevitable if the stage had movements, but pressure rise caused by adsorption and outgassing could be suppressed by improving the surface quality to reduce real surface area, and by coating the guide rail surface with titanium nitride (TiN) which has less adhesion probability of gas molecules. The results also indicate that the pressure rise increased when the air bearing stage operated under high vacuum conditions.

An Experimental Study of a Diffuser Test Rig for Simulating High-Altitude Environment by using Hot (고온 연소가스를 이용한 고공 환경 모사용 디퓨저 실험장치 연구)

  • Yang, Jae-Jun;Lee, Yang-Suk;Kim, Yoo;Ko, Young-Sung;Kim, Yong-Wook;Kim, Chun-Taek
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.31-34
    • /
    • 2007
  • Performance tests of supersonic exhaust diffuser were conducted by using hot combustion gas for simulating high-altitude environment. The test rig consists of a combustion chamber, a vacuum chamber, water cooling ring and diffuser. Before combustion experiments, the preliminary leak tests were carried out on the liquid rocket engine and diffuser by using high pressure nitrogen(30barg) and a vacuum pump. The leak test results showed that there was no leaks at high pressure and vacuum pressure conditions.

  • PDF