• Title/Summary/Keyword: Vacuum Block

Search Result 70, Processing Time 0.026 seconds

Effect of Evacuation Variables on Pressure Change in the Die Cavity (다이캐스팅 금형 공간 내의 감압도에 미치는 제 변수의 영향)

  • Kim, Ki-Young
    • Journal of Korea Foundry Society
    • /
    • v.20 no.3
    • /
    • pp.181-187
    • /
    • 2000
  • There are two types of vacuum die casting, one is known as the chill block method, and the other is the valve block method. Efficiency of the valve block method is better than the chill block method. However purchasing and maintaining cost of the former one is very high, the latter method is popular in many small and medium die casting shops. Simple evacuation system using chill vent was prepared to investigate the effect of the air pressure, hose length and chill vent type on the pressure change in die cavity in this study. The rate of evacuation was influenced by the evacuation method, chill vent condition and hose length. Evacuation time became longer and vacuum level lower when evacuating cavity via chill vent. It took a longer time to evacuate the cavity when a longer hose was used. Vacuum level in the cavity also decreased with increase in hose length.

  • PDF

Immediate Autogenous Fresh Demineralized Tooth (Auto-FDT) Graft for Alveolar Bone Reconstruction (즉시 탈회 치아이식재를 사용한 치조골 재건술)

  • Lee, Eun-Young
    • The Journal of the Korean dental association
    • /
    • v.54 no.5
    • /
    • pp.348-355
    • /
    • 2016
  • Ideal autogenous or allogenic bone graft materials should provide 1) stabilization of blood clot, 2) scaffolds for cellular proliferation and differentiation, 3) release of osteogenic growth factors, 4) appropriate resorption profile for remodeling of new bone. Teeth, especially dentin, mostly contain hydroxyapatite and type I collagen which are similar to bone, and could be valuable graft material. Clinically teeth are used as calcined or demineralized forms. Demineralized form of dentin can be more effective as a graft material. But a conventional decalcification method takes time and long treatment time may give negative effects to various osteogenic proteins in dentin. Author used a new clinical method to prepare autogenous teeth, which could be grafted into the removal defects immediately after extraction using vacuum ultrasonic system. The process could be finished within two hours regardless of the form (powder, chip or block). Teeth were processed to graft materials in block, chip, or powder types immediately after extraction. It took 120 minutes to prepare block types and 40 minutes to prepare powder. Clinical cases did not show any adverse response and the healing was favorable. Rapid preparation of autogenous teeth with the vacuum ultrasonic system could make the immediate one-day extraction and graft possible.

  • PDF

TRAUMATIZED TOOTH STABILIZATION USING VACUUM-FORMED SPLINT IN A CEREBRAL PALSY PATIENT (뇌병변 장애 환자의 외상 치아에서 vacuum-formed splint를 이용한 교합 안정술)

  • Nam, Ok Hyung;Park, Jae-Hong;Kim, Kwang Chul;Choi, Yeong Chul;Choi, Sung Chul
    • The Journal of Korea Assosiation for Disability and Oral Health
    • /
    • v.10 no.2
    • /
    • pp.89-92
    • /
    • 2014
  • Reposition and splinting has been widely recommended when clinicians treat traumatically dislocated tooth. This case represents stabilization of traumatized tooth in a cerebral palsy patient who failed resin wire splint because of parafunctional oral habit and lack of cooperation. Clinically, mobility of traumatized tooth decreased due to stabilization using vacuum-formed splint with posterior occlusal block in 2 weeks. Vacuum-formed splint may be a simple and effective stabilization technique for traumatized tooth in a cerebral palsy patient.

Low Cost, Large Area Nanopatterning via Directed Self-Assembly

  • Kim, Sang-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.24-25
    • /
    • 2011
  • Molecular self-assembly has several advantages over other nanofabrication methods. Molecular building blocks ensure ultrafine pattern precision, parallel structure formation allows for mass production and a variety of three-dimensional structures are available for fabricating complex structures. Nevertheless, the molecular interaction for self-assembly generally relies on weak forces such as van der Waals force, hydrogen bonding, or hydrophobic interaction. Due to the weak interaction, the structure formation is usually slow and the degree of ordering is low in a self-assembled structure. To promote self-assembly, directed assembly methods employing prepatterned substrates or external fields have been developed and gathered a great deal of technological attention as a next generation nanofabrication process. In this presentation a variety of directed assembly methods for soft nanomaterials including block copolymers, peptides and carbon nanomaterials will be introduced. Block copolymers are representative self-assembling materials extensively utilized in nanofabrication. In contrast to colloid assembly or anodized metal oxides, various shapes of nanostructures, including lines or interconnected networks, can be generated with a precise tunability over their shape and size. Applying prepatterned substrates$^{1,2}$ or introducing thickness modulation$^3$ to block copolymer thin films allowed for the control over the orientational and positional orderings of self-assembled structures. The nanofabrication processes for metals, semiconductors$^4$, carbon nanotubes$^{5,6}$, and graphene$^{6,7}$ templating block copolymer self-assembly will be presented.

  • PDF

Control of Optical Hysteresis in Block Copolymer Photonic Gels: A Step Towards Wet Photonic Memory Films

  • Kim, Eun-Ju;Gang, Chang-Jun;Jang, Yu-Rim;Senthilkumar, S.;Gang, Yeong-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.279-279
    • /
    • 2010
  • Smart gels have recently associated with photonic crystals to form photonic gels. Since these photonic gels are capable of reversibly converting the volume change of gels induced in response to external chemical or electric stimuli into characteristic optical signals, they have been considered not only as a good platform for label-free chemical or biological detection, actuators or optical switches but also as a good model system to investigate gel swelling behaviour. Recently, we reported block copolymer photonic gels self-assembled from polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) block copolymers, and demonstrated that selective swelling of lamellar structure allows extremely large tunability of the photonic stop band from UV region to IR region ($\lambda$ peak=350~1,600 nm). Herein we report block copolymer photonic gels which exhibit strong tunable optical hysteresis and their applications. As nonlinear responses in swelling of hydrogels were often observed, photonic gels exhibit optical hysteresis with change of external pH. We demonstrate such optical hysteresis can be precisely programmed by controlling ion-pairing affinity. We anticipate that photonic gels with carefully tunned optical hysteresis are applicable to optical memory devices.

  • PDF

Effects of Electron Beam Irradiation on Tribological and Physico-chemical Properties of Polyoxymethylene (POM-C) copolymer

  • Rahman, Md. Shahinur;Yang, Jong-Keun;Shaislamov, Ulugbek;Lyakhov, Konstantin;Kim, Min-Seok;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.153-153
    • /
    • 2016
  • Polyoxymethylene copolymer (POM-C) is an attractive and widely used engineering thermoplastic across many industrial sectors owing to outstanding physical, mechanical, self-lubricating and chemical properties. In this research work, the POM-C blocks were irradiated with 1 MeV electron beam energy in five doses (100, 200, 300, 500 and 700 KGy) in vacuum condition at room temperature. The tribological and physico-chemical properties of electron beam irradiated POM-C blocks have been analyzed using Pin on disk tribometer, Raman spectroscopy, SEM-EDS, Optical microscopy, 3D Nano surface profiler system and Contact angle analyzer. Electron beam irradiation at a dose of 100 kGy resulted in a decrease of the friction coefficient and wear loss of POM-C block due to well suited cross-linking, carbonization, free radicals formation and energetic electrons-atoms collisions (physical interaction). It also shows lowest surface roughness and highest water contact angle among all unirradiated and irradiated POM-C blocks. The irradiation doses at 200, 300, 500 and 700 kGy resulted in increase of the friction coefficient as compared to unirradiated POM-C block due to severe chain scission, chemical and physical structural degradation. The electron beam irradiation transferred the wear of unirradiated POM-C block from the abrasive wear, adhesive wear and scraping to mild scraping for the 1 MeV, 100 kGy irradiated POM-C block which is concluded from SEM-EDS and Optical microscopic observations. The degree of improvement for tribological attribute relies on the electron beam irradiation condition (energy and dose rate).

  • PDF

Simulation of Molecular Flows Inside a Guide Block in the OLED Deposition Process (OLED 박막 증착공정에서 유도로 내부의 분자유동 해석)

  • Sung, Jae-Yong;Lee, Eung-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.2
    • /
    • pp.45-50
    • /
    • 2008
  • Molecular flows inside a guide block in the OLED(organic luminescent emitting device) deposition process have been simulated using DSMC(direct simulation Monte Carlo) method. Because the organic materials are evaporated under vacuum, molecules flow at a high Knudsen number of the free molecular regime, where the continuum mechanics is not valid. A guide block is designed as a part of the linear cell source to transport the evaporated materials to a deposition chamber, When solving the flows, the inlet boundary condition is proved to affect significantly the whole flow pattern. Thus, it is proposed that the pressure should be specified at the inlet. From the analysis of the density distributions at the nozzle exit of the guide block, it is shown that the longer nozzle can emit molecules more straightly. Finally, a nondimensionalized mass flow profile is obtained by numerical experiments, where various nozzle widths and inlet pressures are tested.