• 제목/요약/키워드: Vacuum Block

검색결과 70건 처리시간 0.028초

다이캐스팅 금형 공간 내의 감압도에 미치는 제 변수의 영향 (Effect of Evacuation Variables on Pressure Change in the Die Cavity)

  • 김기영
    • 한국주조공학회지
    • /
    • 제20권3호
    • /
    • pp.181-187
    • /
    • 2000
  • There are two types of vacuum die casting, one is known as the chill block method, and the other is the valve block method. Efficiency of the valve block method is better than the chill block method. However purchasing and maintaining cost of the former one is very high, the latter method is popular in many small and medium die casting shops. Simple evacuation system using chill vent was prepared to investigate the effect of the air pressure, hose length and chill vent type on the pressure change in die cavity in this study. The rate of evacuation was influenced by the evacuation method, chill vent condition and hose length. Evacuation time became longer and vacuum level lower when evacuating cavity via chill vent. It took a longer time to evacuate the cavity when a longer hose was used. Vacuum level in the cavity also decreased with increase in hose length.

  • PDF

즉시 탈회 치아이식재를 사용한 치조골 재건술 (Immediate Autogenous Fresh Demineralized Tooth (Auto-FDT) Graft for Alveolar Bone Reconstruction)

  • 이은영
    • 대한치과의사협회지
    • /
    • 제54권5호
    • /
    • pp.348-355
    • /
    • 2016
  • Ideal autogenous or allogenic bone graft materials should provide 1) stabilization of blood clot, 2) scaffolds for cellular proliferation and differentiation, 3) release of osteogenic growth factors, 4) appropriate resorption profile for remodeling of new bone. Teeth, especially dentin, mostly contain hydroxyapatite and type I collagen which are similar to bone, and could be valuable graft material. Clinically teeth are used as calcined or demineralized forms. Demineralized form of dentin can be more effective as a graft material. But a conventional decalcification method takes time and long treatment time may give negative effects to various osteogenic proteins in dentin. Author used a new clinical method to prepare autogenous teeth, which could be grafted into the removal defects immediately after extraction using vacuum ultrasonic system. The process could be finished within two hours regardless of the form (powder, chip or block). Teeth were processed to graft materials in block, chip, or powder types immediately after extraction. It took 120 minutes to prepare block types and 40 minutes to prepare powder. Clinical cases did not show any adverse response and the healing was favorable. Rapid preparation of autogenous teeth with the vacuum ultrasonic system could make the immediate one-day extraction and graft possible.

  • PDF

뇌병변 장애 환자의 외상 치아에서 vacuum-formed splint를 이용한 교합 안정술 (TRAUMATIZED TOOTH STABILIZATION USING VACUUM-FORMED SPLINT IN A CEREBRAL PALSY PATIENT)

  • 남옥형;박재홍;김광철;최영철;최성철
    • 대한장애인치과학회지
    • /
    • 제10권2호
    • /
    • pp.89-92
    • /
    • 2014
  • 상악 전치부 완전탈구를 주소로 내원한 지적 장애를 동반한 뇌병변 장애를 가진 25세 환자에서 재식 후 구치부 bite block을 추가한 vacuum-formed splint을 이용한 교합 안정술을 통하여, 외상 치아의 동요도 감소 및 교합안정을 이루는데 도움이 될 것으로 사료 된다.

Low Cost, Large Area Nanopatterning via Directed Self-Assembly

  • 김상욱
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.24-25
    • /
    • 2011
  • Molecular self-assembly has several advantages over other nanofabrication methods. Molecular building blocks ensure ultrafine pattern precision, parallel structure formation allows for mass production and a variety of three-dimensional structures are available for fabricating complex structures. Nevertheless, the molecular interaction for self-assembly generally relies on weak forces such as van der Waals force, hydrogen bonding, or hydrophobic interaction. Due to the weak interaction, the structure formation is usually slow and the degree of ordering is low in a self-assembled structure. To promote self-assembly, directed assembly methods employing prepatterned substrates or external fields have been developed and gathered a great deal of technological attention as a next generation nanofabrication process. In this presentation a variety of directed assembly methods for soft nanomaterials including block copolymers, peptides and carbon nanomaterials will be introduced. Block copolymers are representative self-assembling materials extensively utilized in nanofabrication. In contrast to colloid assembly or anodized metal oxides, various shapes of nanostructures, including lines or interconnected networks, can be generated with a precise tunability over their shape and size. Applying prepatterned substrates$^{1,2}$ or introducing thickness modulation$^3$ to block copolymer thin films allowed for the control over the orientational and positional orderings of self-assembled structures. The nanofabrication processes for metals, semiconductors$^4$, carbon nanotubes$^{5,6}$, and graphene$^{6,7}$ templating block copolymer self-assembly will be presented.

  • PDF

Control of Optical Hysteresis in Block Copolymer Photonic Gels: A Step Towards Wet Photonic Memory Films

  • 김은주;강창준;장유림;;강영종
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.279-279
    • /
    • 2010
  • Smart gels have recently associated with photonic crystals to form photonic gels. Since these photonic gels are capable of reversibly converting the volume change of gels induced in response to external chemical or electric stimuli into characteristic optical signals, they have been considered not only as a good platform for label-free chemical or biological detection, actuators or optical switches but also as a good model system to investigate gel swelling behaviour. Recently, we reported block copolymer photonic gels self-assembled from polystyrene-b-poly(2-vinyl pyridine) (PS-b-P2VP) block copolymers, and demonstrated that selective swelling of lamellar structure allows extremely large tunability of the photonic stop band from UV region to IR region ($\lambda$ peak=350~1,600 nm). Herein we report block copolymer photonic gels which exhibit strong tunable optical hysteresis and their applications. As nonlinear responses in swelling of hydrogels were often observed, photonic gels exhibit optical hysteresis with change of external pH. We demonstrate such optical hysteresis can be precisely programmed by controlling ion-pairing affinity. We anticipate that photonic gels with carefully tunned optical hysteresis are applicable to optical memory devices.

  • PDF

Effects of Electron Beam Irradiation on Tribological and Physico-chemical Properties of Polyoxymethylene (POM-C) copolymer

  • ;;;;김민석
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.153-153
    • /
    • 2016
  • Polyoxymethylene copolymer (POM-C) is an attractive and widely used engineering thermoplastic across many industrial sectors owing to outstanding physical, mechanical, self-lubricating and chemical properties. In this research work, the POM-C blocks were irradiated with 1 MeV electron beam energy in five doses (100, 200, 300, 500 and 700 KGy) in vacuum condition at room temperature. The tribological and physico-chemical properties of electron beam irradiated POM-C blocks have been analyzed using Pin on disk tribometer, Raman spectroscopy, SEM-EDS, Optical microscopy, 3D Nano surface profiler system and Contact angle analyzer. Electron beam irradiation at a dose of 100 kGy resulted in a decrease of the friction coefficient and wear loss of POM-C block due to well suited cross-linking, carbonization, free radicals formation and energetic electrons-atoms collisions (physical interaction). It also shows lowest surface roughness and highest water contact angle among all unirradiated and irradiated POM-C blocks. The irradiation doses at 200, 300, 500 and 700 kGy resulted in increase of the friction coefficient as compared to unirradiated POM-C block due to severe chain scission, chemical and physical structural degradation. The electron beam irradiation transferred the wear of unirradiated POM-C block from the abrasive wear, adhesive wear and scraping to mild scraping for the 1 MeV, 100 kGy irradiated POM-C block which is concluded from SEM-EDS and Optical microscopic observations. The degree of improvement for tribological attribute relies on the electron beam irradiation condition (energy and dose rate).

  • PDF

OLED 박막 증착공정에서 유도로 내부의 분자유동 해석 (Simulation of Molecular Flows Inside a Guide Block in the OLED Deposition Process)

  • 성재용;이응기
    • 한국공작기계학회논문집
    • /
    • 제17권2호
    • /
    • pp.45-50
    • /
    • 2008
  • Molecular flows inside a guide block in the OLED(organic luminescent emitting device) deposition process have been simulated using DSMC(direct simulation Monte Carlo) method. Because the organic materials are evaporated under vacuum, molecules flow at a high Knudsen number of the free molecular regime, where the continuum mechanics is not valid. A guide block is designed as a part of the linear cell source to transport the evaporated materials to a deposition chamber, When solving the flows, the inlet boundary condition is proved to affect significantly the whole flow pattern. Thus, it is proposed that the pressure should be specified at the inlet. From the analysis of the density distributions at the nozzle exit of the guide block, it is shown that the longer nozzle can emit molecules more straightly. Finally, a nondimensionalized mass flow profile is obtained by numerical experiments, where various nozzle widths and inlet pressures are tested.