• Title/Summary/Keyword: Vacuum Assisted Process

Search Result 86, Processing Time 0.036 seconds

Process Characteristics and Applications of High Density Plasma Assisted Sputtering System (HiPASS)

  • Yang, Won-Gyun;Kim, Gi-Taek;Lee, Seung-Hun;Kim, Do-Geun;Kim, Jong-Guk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.95-95
    • /
    • 2013
  • 박막 공정 기술은 반도체 및 디스플레이뿐만 아니라 대부분의 전자소자에 적용되는 매우 중요한 기술이다. 그 중, 마그네트론 스퍼터링 공정은 플라즈마를 이용하여 금속 및 세라믹 등의 벌크 물질을 박막으로 증착 가능한 가장 널리 사용되는 방법 중의 하나이다. 하지만, Fe, Co, Ni 같은 강자성체 재료는 공정이 불가능하며, 스퍼터링 타겟 효율이 40% 이하이고, 제한적인 방전압력 범위 및 전류 상승에 의한 높은 전압 인가 제한이 있다는 단점이 있다. 본 연구에서 사용된 고밀도 플라즈마 소스를 적용한 고효율 스퍼터링 시스템은 할로우 음극을 이용한 원거리에서 고밀도 플라즈마를 생성하여 전자석 코일을 통해 자석이 없는 음극으로 이온을 수송시켜 스퍼터링을 일으킨다. 따라서 강자성체 재료의 스퍼터링이 가능하며, 90% 이상의 타겟 사용 효율 구현 및 기존 마그네트론 스퍼터링 대비 고속 증착이 가능하다. 또한, $10^{-4}$ Torr 압력영역에서 방전 및 스퍼터링이 가능하다. 타겟 이온 전류를 타겟 인가 전압과 관계없이 0~4 A까지, 타겟 이온 전류와 상관없이 타겟 인가 전압을 70~1,000 V 이상까지 독립적으로 제어가능하다. 또한 TiN과 같은 질소 반응성 공정에서 반응성 가스인 질소를 40%까지 넣어도 타겟에 수송되는 이온의 양에 영향이 없다. 할로우 음극 방전 전류 40 A에서 발생된 플라즈마의 이온에너지 분포는 55 eV에서 가우시안 분포를 보였으며, 플라즈마 포텐셜인 sheath drop은 74 V 였다. OES를 통한 광학적 진단 결과, 전자석에 의한 이온빔 초점에 따라 플라즈마 이온화율을 1.8배까지 증가시킬 수 있으며, 할로우 음극 방전 전류가 60~100 A로 증가하면서 플라즈마 이온화율을 6배까지 증가 가능하다. 또한, 타겟 이온 전류와 관계없이 타겟 인가 전압을 300~800 V로 증가시킴에 따라 Ar 이온 밀도의 경우 1.4배 증가, Ti 이온 밀도의 경우 2.2배 증가시킬 수 있었으며, TiN의 경우 증착 속도도 16~44 nm/min으로 제어가 가능하다.

  • PDF

EFFECT OF ION BEAM ASSISTED CLEANING ON ADHESION OF ALUMINIUM TO POLYMER SUBSTRATE OF PC AND PMMA

  • Kwon, Sik-Chol;Lee, Gun-Hwan;Lee, Chuel-Yong;Gob, Han-Bum;Lim, Jun-Seop;Goh, Sung-Jin
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.428-432
    • /
    • 1999
  • As metallic surface has its unique lustrous appearance and optical reflectance in visible range of light, the metallization of plastic surface has been an essential drive toward weight reduction for fuel economy and decorations in transportation industry and has been put into practiced from wet chemical-electrochemial to dry vacuum process in view of an environmental effect. Electron-beam metallization was used in this work with an aim at improving the scratchproof surface hardness of plastic substrate with metallic finish character. Thin film of Al ($1000\AA$) and $SiO_2$($7000\AA$) were metallized on substrate of PC and PMMA and the films were evaluated by pencil test for surface hardness and by cross-cut tape test for adhesion. The ion beam treatment improved around twice as hard as non-treat surface. The ion beam is effect on its hardness and adhesion to surface hardened PC substrate.

  • PDF

Three-dimensional MXene (Ti3C2Tx) Film for Radionuclide Removal From Aqueous Solution

  • Jang, Jiseon;Lee, Dae Sung
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2018.11a
    • /
    • pp.379-379
    • /
    • 2018
  • MXenes are a new family of 2D transition metal carbide nanosheets analogous to graphene (Lv et al., 2017; Sun et al., 2018). Due to the easy availability, hydrophilic behavior, and tunable chemistry of MXenes, their use in applications for environmental pollution remediation such as heavy metal adsorption has recently been explored (Li et al., 2017). In this study, three-dimensional (3D) MXene ($Ti_3C_2T_x$) films with high adsorption capacity, good mechanical strength, and high selectivity for specific radionuclide from aquose solution were successfully fabricated by a polymeric precursor method using vacuum-assisted filtration. The highest removal efficiency on the films was 99.54%, 95.61%, and 82.79% for $Sr^{2+}$, $Co^{2+}$, and $Cs^+$, respectively, using a film dosage of 0.06 g/ L in the initial radionuclide solution (each radionuclide concentration = 1 mg/L and pH = 7.0). Especially, the adsorption process reached an equilibrium within 30 min. The expanded interlayer spacing of $Ti_3C_2T_x$ sheets in MXene films showed excellent radionuclide selectivity ($Cs^+$ and/or $Sr^{2+}/Co^{2+}$) (Simon, 2017). Besides, the MXene films was not only able to be easily retrieved from an aqueous solution by filtration after decontamination processes, but also to selectively separate desired target radionuclides in the solutions. Therefore, the newly developed MXene ($Ti_3C_2T_x$) films has a great potential for radionuclide removal from aqueous solution.

  • PDF

Energy absorption of foam-filled lattice composite cylinders under lateral compressive loading

  • Chen, Jiye;Zhuang, Yong;Fang, Hai;Liu, Weiqing;Zhu, Lu;Fan, Ziyan
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.133-148
    • /
    • 2019
  • This paper reports on the energy absorption characteristics of a lattice-web reinforced composite sandwich cylinder (LRCSC) which is composed of glass fiber reinforced polymer (GFRP) face sheets, GFRP lattice webs, polyurethane (PU) foam and ceramsite filler. Quasi-static compression experiments on the LRCSC manufactured by a vacuum assisted resin infusion process (VARIP) were performed to demonstrate the feasibility of the proposed cylinders. Compared with the cylinders without lattice webs, a maximum increase in the ultimate elastic load of the lattice-web reinforced cylinders of approximately 928% can be obtained. Moreover, due to the use of ceramsite filler, the energy absorption was increased by 662%. Several numerical simulations using ANSYS/LS-DYNA were conducted to parametrically investigate the effects of the number of longitudinal lattice webs, the number of transverse lattice webs, and the thickness of the transverse lattice web and GFRP face sheet. The effectiveness and feasibility of the numerical model were verified by a series of experimental results. The numerical results demonstrated that a larger number of thicker transverse lattice webs can significantly enhance the ultimate elastic load and initial stiffness. Moreover, the ultimate elastic load and initial stiffness were hardly affected by the number of longitudinal lattice webs.

Effect of Water Absorption on the Tensile Properties of Carbon-Glass/Epoxy Hybrid Composite in Low Temperature (탄소-유리/에폭시 하이브리드 복합재의 저온 인장 특성에 미치는 수분의 영향)

  • Jung, Hana;Kim, Yonjig
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.10
    • /
    • pp.729-734
    • /
    • 2012
  • This study investigated the effect of water absorption on the tensile properties of carbon-glass/epoxy hybrid composites at room temperature and $-30^{\circ}C$. To investigate the effect of the position of glass fabric in the hybrid composite on the tensile properties, the stacking pattern of the fiber fabrics for reinforcing was created in three different ways: (a) glass fabrics sandwiched between carbon fabrics, (b) carbon fabrics sandwiched between glass fabrics and (c) alternative layers of carbon and glass fabrics. They were manufactured by a vacuum-assisted resin transfer molding (VARTM) process. The results showed that there was surprisingly little difference in tensile strength at the two different temperatures with dry and wet conditions. However, the water absorption into the hybrid system affected the tensile properties of the hybrid composites at RT and $-30^{\circ}C$. When the glass fabrics were at the outermost layers, the hybrid composite had the lowest tensile properties. This is attributed to the fact that the composite had a relatively high water absorption rate.

Highly Doped Nano-crystal Embedded Polymorphous Silicon Thin Film Deposited by Using Neutral Beam Assisted CVD at Room Temperature

  • Jang, Jin-Nyeong;Lee, Dong-Hyeok;So, Hyeon-Uk;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.154-155
    • /
    • 2012
  • The promise of nano-crystalites (nc) as a technological material, for applications including display backplane, and solar cells, may ultimately depend on tailoring their behavior through doping and crystallinity. Impurities can strongly modify electronic and optical properties of bulk and nc semiconductors. Highly doped dopant also effect structural properties (both grain size, crystal fraction) of nc-Si thin film. As discussed in several literatures, P atoms or radicals have the tendency to reside on the surface of nc. The P-radical segregation on the nano-grain surfaces that called self-purification may reduce the possibility of new nucleation because of the five-coordination of P. In addition, the P doping levels of ${\sim}2{\times}10^{21}\;at/cm^3$ is the solubility limitation of P in Si; the solubility of nc thin film should be smaller. Therefore, the non-activated P tends to segregate on the grain boundaries and the surface of nc. These mechanisms could prevent new nucleation on the existing grain surface. Therefore, most researches shown that highly doped nc-thin film by using conventional PECVD deposition system tended to have low crystallinity, where the formation energy of nucleation should be higher than the nc surface in the intrinsic materials. If the deposition technology that can make highly doped and simultaneously highly crystallized nc at low temperature, it can lead processes of next generation flexible devices. Recently, we are developing a novel CVD technology with a neutral particle beam (NPB) source, named as neutral beam assisted CVD (NBaCVD), which controls the energy of incident neutral particles in the range of 1~300eV in order to enhance the atomic activation and crystalline of thin films at low temperatures. During the formation of the nc-/pm-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. In the case of phosphorous doped Si thin films, the doping efficiency also increased as increasing the reflector bias (i.e. increasing NPB energy). At 330V of reflector bias, activation energy of the doped nc-Si thin film reduced as low as 0.001 eV. This means dopants are fully occupied as substitutional site, even though the Si thin film has nano-sized grain structure. And activated dopant concentration is recorded as high as up to 1020 #/$cm^3$ at very low process temperature (< $80^{\circ}C$) process without any post annealing. Theoretical solubility for the higher dopant concentration in Si thin film for order of 1020 #/$cm^3$ can be done only high temperature process or post annealing over $650^{\circ}C$. In general, as decreasing the grain size, the dopant binding energy increases as ratio of 1 of diameter of grain and the dopant hardly be activated. The highly doped nc-Si thin film by low-temperature NBaCVD process had smaller average grain size under 10 nm (measured by GIWAXS, GISAXS and TEM analysis), but achieved very higher activation of phosphorous dopant; NB energy sufficiently transports its energy to doping and crystallization even though without supplying additional thermal energy. TEM image shows that incubation layer does not formed between nc-Si film and SiO2 under later and highly crystallized nc-Si film is constructed with uniformly distributed nano-grains in polymorphous tissues. The nucleation should be start at the first layer on the SiO2 later, but it hardly growth to be cone-shaped micro-size grains. The nc-grain evenly embedded pm-Si thin film can be formatted by competition of the nucleation and the crystal growing, which depend on the NPB energies. In the evaluation of the light soaking degradation of photoconductivity, while conventional intrinsic and n-type doped a-Si thin films appeared typical degradation of photoconductivity, all of the nc-Si thin films processed by the NBaCVD show only a few % of degradation of it. From FTIR and RAMAN spectra, the energetic hydrogen NB atoms passivate nano-grain boundaries during the NBaCVD process because of the high diffusivity and chemical potential of hydrogen atoms.

  • PDF

Electrical properties of metal-oxide-semiconductor structures containing Si nanocrystals fabricated by rapid thermal oxidation process (급속열처리산화법으로 형성시킨 $SiO_2$/나노결정 Si의 전기적 특성 연구)

  • Kim, Yong;Park, Kyung-Hwa;Jung, Tae-Hoon;Park, Hong-Jun;Lee, Jae-Yeol;Choi, Won-Chul;Kim, Eun-Kyu
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.1
    • /
    • pp.44-50
    • /
    • 2001
  • Metal oxide semiconductor (MOS) structures containing nanocrystals are fabricated by using rapid thermal oxidations of amorphous silicon films. The amorphous films are deposited either by electron beam deposition method or by electron beam deposition assisted by Ar ion beam during deposition. Post oxidation of e-beam deposited film results in relatively small hysteresis of capacitance-voltage (C-V) and the flat band voltage shift, $\DeltaV_{FB}$ is less than 1V indicative of the formation of low density nanocrystals in $SiO_2$ near $SiO_2$/Si interface. By contrast, we observe very large hysteresis in C-V characteristics for oxidized ion-beam assisted e-beam deposited sample. The flat band voltage shift is larger than 22V and the hysteresis becomes even broader as increasing injection times of holes at accumulation condition and electrons at inversion condition. The result indicates the formation of slow traps in $SiO_2$ near $SiO_2$/Si interface which might be related to large density nanocrystals. Roughly estimated trap density is $1{\times}10^{13}cm^{-2}$. Such a large hysteresis may be explained in terms of the activation of adatom migration by Ar ion during deposition. The activated migration may increase nucleation rate of Si nuclei in amorphous Si matrix. During post oxidation process, nuclei grow into nanocrystals. Therefore, ion beam assistance during deposition may be very feasible for MOS structure containing nanocrystals with large density which is a basic building block for single electron memory device.

  • PDF

Method for Drying of Crude Extract Obtained by Biomass Extraction Using an Ionic Liquid (이온성 액체를 이용한 바이오매스 추출에 의해 얻어진 추출물의 건조 방법)

  • Kim, Seul Ki;Kim, Jin-Hyun
    • Korean Chemical Engineering Research
    • /
    • v.54 no.3
    • /
    • pp.374-379
    • /
    • 2016
  • When using an ionic liquid as co-solvent, the extraction efficiency of anticancer agent paclitaxel from biomass was dramatically improved. However, the residual ionic liquid had a significant negative effect on convenient and feasibility of following concentration and drying steps. In this study, a novel method was developed for the effective drying of the crude extract obtained from biomass extraction with ionic liquid. The residual ionic liquid was easily and conveniently removed by drying alone after pre-treatment and additional washing of a sample with water. The optimal crude extract/water ratio and mixing time for pre-treatment and crude extract/water ratio for additional washing were 1:70 (w/v), 4 min, and 1:100 (w/v), respectively. In the microwave-assisted drying process, the drying time was 9-fold shorter than in the vacuum oven drying process.

A Dual-Scale Analysis of Macroscopic Resin Flow in Vacuum Assisted Resin Transfer Molding Process (VARTM공정에서의 거시적 수지 유동의 Dual-Scale 분석)

  • 박윤희;강문구;이우일
    • Composites Research
    • /
    • v.15 no.6
    • /
    • pp.1-7
    • /
    • 2002
  • In VARTM process where a sacrificial medium is used to facilitate the resin flow, the velocity of resin varies drastically between the sacrificial medium and the fiber preform. Although the thickness-to-length ratio of a VARTM product is usually small, a 3-D analysis is prerequisite to analyze the lead-lag flow in the two different media. The problem associated with the full 3-D analysis is the CPU time. A full 3-D numerical mesh comprising large number of nodes requires an impractical CPU time on average computer platforms. In this study, a dual-scale analysis technique was developed. The flow analysis for the entire calculation domain was conducted in 2.5-D, and the 3-D analysis was performed for a small area of special concern. In some numerical examples, the local 3-D analysis could discover an eccentric flow pattern as well as the lead-lag flow that will inevitably be neglected in 2.5-D simulations. The global-local analysis technique practiced in this study can be used to analyze the intricate flow of resin through non-uniform media in affordable CPU times.

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF