• Title/Summary/Keyword: Vaccinology

Search Result 13, Processing Time 0.019 seconds

Inefficient Transmissibility of NS-Truncated H3N8 Equine Influenza Virus in Dogs

  • Na, Woonsung;Song, Manki;Yeom, Minjoo;Park, Nanuri;Kang, Bokyu;Moon, Hyoungjoon;Jeong, Dae-Gwin;Kim, Jeong-Ki;Song, Daesub
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.317-320
    • /
    • 2015
  • H3N8 equine influenza virus (EIV) causes respiratory diseases in the horse population, and it has been demonstrated that EIV can transmit into dogs owing to its availability on receptors of canine respiratory epithelial cells. Recently, we isolated H3N8 EIV from an EIV-vaccinated horse that showed symptoms of respiratory disease, and which has a partially truncated nonstructural gene (NS). However, it is not clear that the NS-truncated EIV has an ability to cross the host species barrier from horses to dogs as well. Here, we experimentally infected the NS-truncated H3N8 EIV into dogs, and monitored their clinical signs and viral load in respiratory organs to determine the virus's transmissibility.

A Current Research Insight into Function and Development of Adjuvants (면역보조제의 작용 및 개발)

  • Sohn, Eun-Soo;Son, EunWha;Pyo, SuhkNeung
    • IMMUNE NETWORK
    • /
    • v.4 no.3
    • /
    • pp.131-142
    • /
    • 2004
  • In recent years, adjuvants have received much attention because of the development of purified subunit and synthetic vaccines which are poor immunogens and require adjuvants to evoke the immune response. Therefore, immunologic adjuvants have been developed and testing for most of this century. During the last years much progress has been made on development, isolation and chemical synthesis of alternative adjuvants such as derivatives of muramyl dipeptide, monophosphoryl lipid A, liposomes, QS-21, MF-59 and immunostimulating complexes (ISCOMS). Biodegradable polymer microspheres are being evaluated for targeting antigens on mucosal surfaces and for controlled release of vaccines with an aim to reduce the number of doses required for primary immunization. The most common adjuvants for human use today are aluminum hydroxide and aluminum phosphate. Calcium phosphate and oil emulsions have been also used in human vaccination. The biggest issue with the use of adjuvants for human vaccines is the toxicity and adverse side effects of most of the adjuvant formulations. Other problems with the development of adjuvants include restricted adjuvanticity of certain formulations to a few antigens, use of aluminum adjuvants as reference adjuvant preparations under suboptimal conditions, non-availability of reliable animal models, use of non-standard assays and biological differences between animal models and humans leading to the failure of promising formulations to show adjuvanticity in clinical trials. The availability of hundreds of different adjuvants has prompted a need for identifying rational standards for selection of adjuvant formulations based on safety and sound immunological principles for human vaccines. The aim of the present review is to put the recent findings into a broader perspective to facilitate the application of these adjuvants in general and experimental vaccinology.

Passage and Adaptation of Maaji Virus in Hamster (Maaji Virus의 Hamster 계대 및 적응)

  • Kim, Yun-Cheol;Paik, Woo-Hyun;Lee, Pyung-Woo
    • The Journal of Korean Society of Virology
    • /
    • v.26 no.1
    • /
    • pp.67-76
    • /
    • 1996
  • The methods that make Hantavirus grow consist of inoculation into the experimental animals and cultured cells. The cultured cells, such as Vero-E6 and A549 cells, have been usually used for isolation of the virus and the animals, such as mice and rats, are used for large scale preparation of the virus so far. Furthermore, the cell can be used to maintain the virus and assay the infectivity and the animals can be used for the experiment of viral pathogenicity and challenge for assessment of vaccine. Apodemus mice, the own natural host of the virus, has been used for challenge test of Hantaan virus. However it has been pointed out to difficult handling and breeding the animal in laboratory. Therefore, we attempted to establish a new animal model for challenge test at the time of isolation of Maaji virus which is a new hantavirus similar but distinct to Hantaan virus. In suckling hamster, the titer of Maaji virus and the lethality to mice of the virus were increased gradually in the titer and lethality through passage by intracerebral (IC) inoculation. We tried to re-adapt this brain virus to lung of weanling hamster. The brain passaged virus was inoculated into weanling hamster intramuscularly. Again, the titer of the virus in lung was also increased by continuous passage of this virus. This facts could regarded as adaptation to new environment in which the virus proliferates. To identity the virus passaged in hamster with Maaji virus, both of the virus passaged in hamster brain and lung were compared with Maaji virus (MAA-I) and Hantaan virus (HTN 76-118) by means of restriction fragment length polymorphism (RFLP) and slingle strand conformation polymophism (SSCP). As a result, we conclude that Maaji virus could be adapted successfully to weanling hamster through this passage strategy. Utilizing this adapted Maaji virus strain, hamster model is able to be used for challenge test in hantaviral vaccinology and further experiments utilizing hamster system as a rather available and convenient lab animal are expected.

  • PDF