• Title/Summary/Keyword: Vaccine production

Search Result 237, Processing Time 0.022 seconds

IDENTIFICATION OF THE AG I/II AND GTFD GENES FROM STREPTOCOCCUS MUTANS GS-5 (연쇄상구균 GS-5의 ag I/II와 gtfD 유전자 클로닝)

  • Jeong, Jin-Woo;Baik, Byeong-Ju;Yang, Yeon-Mi;Seo, Jeong-Ah;Kim, Jae-Gon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.2
    • /
    • pp.357-369
    • /
    • 2005
  • Streptococci are Gram-positive, facultative anaerobes and have no catalase activities. Among mutans streptococci containing ${\alpha}-type$ hemolytic activity, S. mutans is a causative agent for dental caries. As well as acid production yielding the demineralization of tooth enamel, adherence and colonization of S. mutans to the teeth are also important for its virulence. These early colonization are accomplished by the bacterial fibrillar protein, Antigen I/II (Ag I/II) and glucosyltransferase (GTF). Therefore, Ag I/II and GTF are reasonable targets for the development of vaccine against S. mutans GS-5. The ag I/II and gtfD genes from S. mutans GS-5 were cloned and sequenced. Sequence analyses showed the nucleotides sequence of cloned genes had high homology to the sequences previously reported. The sequence alignment of 280 nucleotides between the cloned Ag I/II and the available sequence of the corresponding S. mutans GS-5 showed the perfect match. Comparing with the sequence of gtfD from S. mutans UA159, the corresponding nucleotide sequence of S. mutans GS-5 showed some mismatches and the mismatches introduced changes in four residues out of 105 amino acids, yielding four missense mutations.

  • PDF

Differential Hrd1 Expression and B-Cell Accumulation in Eosinophilic and Non-eosinophilic Chronic Rhinosinusitis With Nasal Polyps

  • Chen, Kun;Han, Miaomiao;Tang, Mengyao;Xie, Yadong;Lai, Yuting;Hu, Xianting;Zhang, Jia;Yang, Jun;Li, Huabin
    • Allergy, Asthma & Immunology Research
    • /
    • v.10 no.6
    • /
    • pp.698-715
    • /
    • 2018
  • Purpose: Hrd1 has recently emerged as a critical regulator of B-cells in autoimmune diseases. However, its role in the pathogenesis of chronic rhinosinusitis with nasal polyps (CRSwNP) remains largely unexplored. This study aimed to examine Hrd1 expression and B-cell accumulation and their possible roles in CRSwNP. Methods: Quantitative real-time polymerase chain reaction, immunohistochemistry, enzyme-linked immunosorbent assay and Western blotting were used to assess gene and protein expression in nasal tissue extracts. Cells isolated from nasal tissues and peripheral blood mononuclear cells were characterized by flow cytometry. Local antibody production was measured in tissue extracts with a Bio-Plex assay. Additionally, changes in Hrd1 expression in response to specific inflammatory stimuli were measured in cultured dispersed polyp cells. Results: Nasal polyps (NPs) from patients with eosinophilic CRSwNP (ECRS) had increased levels of Hrd1, B-cells and plasma cells compared with NPs from patients with non-eosinophilic CRSwNP (non-ECRS) or other control subjects (P < 0.05). The average Hrd1 levels in B-cells in NPs from ECRS patients were significantly higher than those from non-ECRS patients and control subjects (P < 0.05). NPs also contained significantly increased levels of several antibody isotypes compared with normal controls (P < 0.05). Interestingly, Hrd1 expression in cultured polyp cells from ECRS patients, but not non-ECRS patients, was significantly increased by interleukin-$1{\beta}$, lipopolysaccharide and Poly(I:C) stimulation, and inhibited by dexamethasone treatment (P < 0.05). Conclusions: Differential Hrd1 expression and B-cell accumulation between the ECRS and non-ECRS subsets suggests that they can exhibit distinct pathogenic mechanisms and play important roles in NP.

Induction of Unique STAT Heterodimers by IL-21 Provokes IL-1RI Expression on CD8+ T Cells, Resulting in Enhanced IL-1β Dependent Effector Function

  • Dong Hyun Kim;Hee Young Kim;Won-Woo Lee
    • IMMUNE NETWORK
    • /
    • v.21 no.5
    • /
    • pp.33.1-33.19
    • /
    • 2021
  • IL-1β plays critical roles in the priming and effector phases of immune responses such as the differentiation, commitment, and memory formation of T cells. In this context, several reports have suggested that the IL-1β signal is crucial for CTL-mediated immune responses to viral infections and tumors. However, little is known regarding whether IL-1β acts directly on CD8+ T cells and what the molecular mechanisms underlying expression of IL-1 receptors (IL-1Rs) on CD8+ T cells and features of IL-1R+ CD8+ T cells are. Here, we provide evidence that the expression of IL-1R type I (IL-1RI), the functional receptor of IL-1β, is preferentially induced by IL-21 on TCR-stimulated CD8+ T cells. Further, IL-1β enhances the effector function of CD8+ T cells expressing IL-21-induced IL-1RI by increasing cytokine production and release of cytotoxic granules containing granzyme B. The IL-21-IL-1RI-IL-1β axis is involved in an augmented effector function through regulation of transcription factors BATF, Blimp-1, and IRF4. Moreover, this axis confers a unique effector function to CD8+ T cells compared to conventional type 1 cytotoxic T cells differentiated with IL-12. Chemical inhibitor and immunoprecipitation assay demonstrated that IL-21 induces a unique pattern of STAT activation with the formation of both STAT1:STAT3 and STAT3:STAT5 heterodimers, which are critical for the induction of IL-1RI on TCR-stimulated CD8+ T cells. Taken together, we propose that induction of a novel subset of IL-1RI-expressing CD8+ T cells by IL-21 may be beneficial to the protective immune response against viral infections and is therefore important to consider for vaccine design.

Research status of the development of genetically modified papaya (Carica papaya L.) and its biosafety assessment (GM 파파야 개발 및 생물안전성 평가 연구 동향)

  • Kim, Ho Bang;Lee, Yi;Kim, Chang-Gi
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.171-182
    • /
    • 2018
  • Papaya (Carica papaya L.) is one of the crops widely planted in tropical and subtropical areas. The papaya fruit has low calories and are plentiful in vitamins A and C and in minerals. A major problem in papaya production is a plant disease caused by the papaya ringspot virus (PRSV). The first PRSV-resistant GM papaya expressing a PRSV coat protein gene was developed by USA scientists in 1992. The first commercial GM papaya cultivars derived from the event was approved by the US government in 1997. Development of transgenic papayas has been focused on vaccine production and limited agricultural traits, including insect and pathogen resistance, long shelf life, and aluminum and herbicide tolerance. Approximately 17 countries, including the USA and China, produced transgenic papayas and/or commercialized them, which provoked studies on biosafety assessment and development of GM-detection technologies. For the biosafety assessment of potential effects on human health, effects of long-term feeding to model animals have been studied in terms of toxicity and allergenicity. Studies on environmental safety assessment include influence on soil-microbial biodiversity and transfer to soil bacteria of GM selection markers. Many countries, such as Korea, the European Union, and Japan, that have strict regulations for GM crops have serious concerns about unintended introduction of GM cultivars and food commodities using unauthorized GM crops. Transgene- and/or GM event-specific molecular markers and technologies for genomics-based detection of unauthorized GM papaya have been developed and have resulted in the robust detection of GM papayas.

Effects of Natural Honeybee (Apis mellifera ligustica) Venom Treatment on the Humoral Immune Response in Pigs (Beevenom 처리가 돼지의 체내 면역반응에 미치는 효과)

  • 조성구;김경수;이석천
    • Journal of Animal Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.933-942
    • /
    • 2006
  • This experiment was carried out to investigate effects of honeybee venom treatment on the humoral immune response in pigs. Corresponding author : S. K. Cho, Dept. of Animal Sci. Chung-Buk National University, Kaesin-dong, Cheongju, 361-763, Korea. phone : 043-261-2551. E-mail : deercho@chungbuk.ac.kr To investigate effects of natural honeybee venom on the concentration of immunoglobulin G, A, and M, 20 piglets(LY×D) from 3 sows were allocated into two groups bee venom-treated group(10 piglets) and non-treated control(10 piglets). Natural honeybee venom was treated at 0, 3, 6 days after birth and the acupoints were Hai-men(ST-25), Du-kou(CV-8) and Jiao-chao(GV-1) points at 0, 3 days after birth and the regions of castration and tail amputation point at 6 days. Control group was injected 1㎖ of saline to the same site. Concentrations of IgG, A, and M were measured with immunoturbidimetric method at 0, 3, 7, 14, and 21 days after treatment. To investigate the effect of bee venom on the production of antibodies against hog cholera and atrophic rhinitis vaccines that were used as indicator antigens, 40 piglets(LYxD) from 5 sows were grouped as bee venom-treated group (20 piglets) and control group(20 piglets). Natural honeybee venom was treated at 0, 3days(castration, tail amputation) and 21days after birth. The acupoints were Hai-men(ST-25), Du-kou(CV-8) and Jiao-chao (GV-1) points at 0 day, the regions of castration and tail ampution at 3 days and Jiao-chao(GV-1) and Bai-hui(GV-20) points at 21days after birth(weaning). Control group was injected 1ml of saline to the same site. Atrophic rhinitis vaccine was injected twice at 24 and 44 days after birth and hog cholera vaccine was also injected twice at 44 and 64 days after birth. Antibody titers against Bordetella bronchiseptica and hog cholera virus were measured by using tube agglutination and ELISA tests at 24, 34, 44, 54 and 74 days after birth. Concentrations of IgG of treated group were 339.52, 366.48, 296.52, 242.06 and 219.06mg/dl at 0, 3, 7, 14 and 21 days after birth, respectively. In contrast, concentrations of IgG in control group were respectively 347.10, 334.14, 243.28, 205.18 and 191.58mg/dl during same periods with treated group. Concentrations of IgG at 0 day was not significantly different between the treated group and control group but treated group were significantly increased by 10.28% at 3 days after birth (P<0.02), 21.88% at 7 days after birth(P<0.01), 18.0% at 14 days after birth(P<0.07) and 14.3% at 21 days after birth(P<0.01). Concentrations of IgA and Ig M were not significantly different. Antibody titers against hog cholera virus were significantly increased by 57.0% at 24 days after birth(P<0.03), 74.6% at 34 days after birth (P<0.006), 48.6% at 44 days after birth(P<0.017), 45.0% at 54 days after birth(P<0.16) and 44.4% at 74 days after birth (P<0.006) in bee venom treated group in comparison with control group. Antibody titers against the Bordetella bronchiseptica was significantly increased in Beevenom treated group as 9.1% (P<0.32) at 24days, 39.7% (P<0.002) at 34days, 31.9% (P<0.02) at 44days, 33.4% (P<0.01) at 54days and 57.3% (P<0.007) at 74 days after birth when compared with those of control group pigs. Collecting together, the results in this study showed that immune responses were increased by treatment of natural honeybee venom to pigs. These results suggested that the treatment of bee venom could be used effectively for the increase of productivity in livestock industry.

The Optimal Activation State of Dendritic Cells for the Induction of Antitumor Immunity (항종양 면역반응 유도를 위한 수지상세포의 최적 활성화 조건)

  • Nam, Byung-Hyouk;Jo, Wool-Soon;Lee, Ki-Won;Oh, Su-Jung;Kang, Eun-Young;Choi, Yu-Jin;Do, Eun-Ju;Hong, Sook-Hee;Lim, Young-Jin;Kim, Ki-Uk;Jeong, Min-Ho
    • Journal of Life Science
    • /
    • v.16 no.6
    • /
    • pp.904-910
    • /
    • 2006
  • Dendritic cells (DCs) are the only antigen presenting cells (APCs) capable of initiating immune responses, which is crucial for priming the specific cytotoxic T lymphocyte (CTL) response and tumor immunity. Upon activation by DCs, CD4+ helper T cells can cross-prime CD8+ CTLs via IL-12. However, recently activated DCs were described to prime in vitro strong T helper cell type 1 $(Th_1)$ responses, whereas at later time points, they preferentially prime $Th_2$ cells. Therfore, we examined in this study the optimum kinetic state of DCs activation impacted on in vivo priming of tumor-specific CTLs by using ovalbumin (OVA) tumor antigen model. Bone-marrow-derived DCs showed an appropriate expression of surface MHC and costimulatory molecules after 6 or 7-day differentiation. The 6-day differentiated DCs pulsed with OVA antigen for 8 h (8-h DC) and followed by restimulation with LPS for 24 h maintained high interleukin (IL)-12 production potential, accompanying the decreased level in their secretion by delayed re-exposure time to LPS. Furthermore, immunization with 8-h DC induced higher intracellular $interferon(IFN)-{\gamma}+/CD8+T$ cells and elicited more powerful cytotoxicity of splenocytes to EG7 cells, a clone of EL4 cells transfected with an OVA cDNA, than immunization with 24-h DC. In the animal study for the evaluation of therapeutic or protective antitumor immunity, immunization with 8-h DC induced an effective antitumor immunity against tumor of EG7 cells and completely protected mice from tumor formation and prolonged survival, respectively. The most commonly used and clinically applied DC-based vaccine is based on in vitro antigen loading for 24 h. However, our data indicated that antigen stimulation over 8 h decreased antitumor immunity with functional exhaustion of DCs, and that the 8-h DC would be an optimum activation state impacted on in vivo priming of tumor-specific CTLs and subsequently lead to induction of strong antitumor immunity.

Analysis of 5-aza-2'-deoxycytidine-induced Gene Expression in Lung Cancer Cell Lines (폐암 세포주에서 5-aza-2'-deoxycytidine 처치에 의해 발현되는 암항원 유전자 분석)

  • 김창수;이해영;김종인;장희경;박종욱;조성래
    • Journal of Chest Surgery
    • /
    • v.37 no.12
    • /
    • pp.967-977
    • /
    • 2004
  • Background: DNA methylation is one of the important gene expression mechanisms of the cell. When cytosine of CpG dinucleotide in promotor is hypomethylated, expression of some genes that is controlled by this promoter is altered. In this study, the author investigated the effect of DNA demethylating agent, 5-aza-2'-deoxycytidine (ADC), on the expressions of cancer antigen genes, MHC and B7 in 4 lung cancer cell lines, NCIH1703, NCIH522, MRC-5, and A549. Material and Method: After treatment of cell lines, NCIH1703, NCIH522, MRC-5 and A549 with ADC (1 uM) for 48 hours, RT-PCR was performed by using the primers of MAGE, GAGE, NY-ESO-1, PSMA, CEA, and SCC antigen gene. In order to find the optimal ADC treatment condition for induction of cancer antigen, we studied the effect of ADC treatment time and dose on the cancer antigen gene expression. To know the effect of ADC on the expression of MHC or B7 and cell growth, cells were treated with 1 uM of ADC for 72 hours for FACS analysis or cells were treated with 0.2, 1 or 5 uM of ADC for 96 hours for cell counting. Result: After treatment of ADC (1 uM) for 48 hours, the expressions of MAGE, GAGE, NY-ESO-1, and PSMA genes increased in some cell lines. Among 6 MAGE isotypes tested, and gene expression of MAGE-1, -2, -3, -4 and -6 could be induced by ADC treatment. However, CEA gene expression did not change and SCC gene expression was decreased by ADC treatment. Gene expression was generally induced 24 - 28 hours after ADC treatment and expression of MAGE, GAGE, and NY-ESO-1 was maintained at least 14 days after ADC ADC teatment, and expression of MAGE, GAGE, and NY-ESO-1 was maintained at least 14 days after ADC teatment in ADC-Free medium. Most gene expression could be induced at 0.2 uM of ADC, but gene expression increased dependently on ADC treatment dose. The expression of MHC and B7 was not increased by ADC treatment in all four cell lines, and the growth rate of 4 cell lines decreased significantly with the increase of ADC concentrations. Conclusion: Treatment of lung cancer cell lines with ADC increases the gene expression MAGE, GAGE and NY-ESO-1 that are capable of induction of cytotoxic T lymphocyte response. We suggest that treatment with 1 uM of ADC for 48 hours and then culturing in ADC-free medium is optimal condition for induction of cancer antigen. However, ADC has no effect on MHC and B7 induction, additional modification for increase of expression of MHC, B7 and cytokine will be needed for production of efficient cancer cell vaccine.