• Title/Summary/Keyword: Vacancies

Search Result 396, Processing Time 0.023 seconds

Effects of A-Site and B-Site Vacancies on Structural and Dielectric Properties of PLZT Ceramics

  • Jeong, Cheol-Su;Park, Hyu-Bum;Hong, Young-Sik;Kim, Si-Joong
    • The Korean Journal of Ceramics
    • /
    • v.2 no.2
    • /
    • pp.76-82
    • /
    • 1996
  • PLZT ceramics having two nominal compositions, $Pb_{1-3x/2}La_xV_{x/2}(Zr_{03}Ti_{03})O_3$ and $Pb_{1-x}La_x(Zr_{0.2}Ti_{0.5})_{1-x/4}V_{x/4}O_3$ (V: vacancy) with x=0.00~0.30, were prepared. The physical, structural, and dielectric properties were investigated by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and measurements of bulk density and dielectric constant. The two series with A-stie and B-site vacancies showed different physical, structural, dielectric properties, and, specially, Curie temperature. In comparison to PLZT with B-site vacancies, PLZT with A-site vacancies showed high Curie temperatures and low maxima of dielectric constant. Consequently, it is evident that the properties of PLZT ceramics depend on the vacancy formula adopted as a batch composition in preparation.

  • PDF

Effect of Oxygen Vacancies on Photocatalytic Efficiency of TiO2 Nanotubes Aggregation

  • Liu, Feila;Lu, Lu;Xiao, Peng;He, Huichao;Qiao, Lei;Zhang, Yunhuai
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2255-2259
    • /
    • 2012
  • Aggregation of titania nanotubes (TNTs) fabricated by hydrothermal method were calcined in air and dry nitrogen; Changes in morphology and crystallinity of the nanotubes were studied by means of TEM, EDX, and XPS. EDX patterns and XPS spectra proved that there were a certain densities of oxygen vacancies in TNTs annealed in $N_2$. The photocatalysis experiments revealed TNTs/$N_2$ possesses significantly higher photocatalytic efficiency than TNTs annealed in dry air to degrade methylene blue. The correlation between oxygen vacancies and photocatalytic property may be attributed to: 1) oxygen vacancies might have affected results on water molecules adsorption and increase of the hydroxyl concentration; and 2) oxygen vacancies resulted in some changes in electronic structure of TNTs/$N_2$ aggregation and Fermi level extends into the conducting band.

Nucleation and Growth of Vacancy Agglomeration in CZ Silicon Crystals

  • Ogawa, Tomoya;Ma, Minya
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.45-49
    • /
    • 1999
  • When concentration of vacancies in a CZ silicon crystal is defined by molar fraction XB, the degree of super-saturation $\sigma$ is given by [XB-XBS]/XBS=XB/XBS-1=ln (XB/XBS) because XB/XBS is nearly equal to unity. Here, XBS is the saturated concentration of vacancies in a silicon crystal and XB is a little larger than XBS. According to Bragg-Williams approximation, the chemical potential of the vacancies in the crystal is given by ${\mu}$B=${\mu}$0+RT ln XB+RT ln ${\gamma}$, where R is the gas constant, T is temperature, ${\mu}$0 is an ideal chemical potential of the vacancies and ${\gamma}$ is an adjustable parameter similar to the activity of solute in a solution. Thus, $\sigma$(T) is equal to (${\mu}$B-${\mu}$BS)/RT. Driving force of nucleation of the vacancy agglomeration will be proportional to the chemical potential difference (${\mu}$B-${\mu}$BS) or $\sigma$(T), while growth of the vacancy agglomeration is proportional to diffusion of the vacancies and grad ${\mu}$B.

  • PDF

Nucleation and growth of vacancy agglomeration in CZ silicon crystals

  • Ogawa, Tomoya;Ma, Minya
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.3
    • /
    • pp.286-288
    • /
    • 1999
  • When concentration of vacancies in a CZ silicon crystal is defined by molar fraction $X_{B}$, the degree for supersaturation $\sigma$ is given by $[X_{B}-X_{BS}]/X_{BS}=X_{B}/X_{BS}-1=ln(X_{B}/X_{BS})$ because $X_{B}/X_{BS}$ is nearly equal to unity. Here, $X_{BS}$ is the saturated concentration of vacancies in a silicon crystal and $X_{B}$ is a little larger than $X_{BS}$. According to Bragg-Williams approximation, the chemical potential of the vacancies in the crystal is given by ${\mu}_{B}={\mu}^{0}+RT$ ln $X_{B}+RT$ ln ${\gamma}$, where R is the gas constant, T is temperature, ${\mu}^{0}$ is an ideal chemical potential of the vacancies and ${\gamma}$ is and adjustable parameter similar to the activity of solute in a solute in a solution. Thus, ${\sigma}(T)$ is equal to $({\mu}_{B}-{\mu}_{BS})/RT$. Driving force of nucleation for the vacancy agglomeration will be proportional to the chemical potentialdifference $({\mu}_{B}-{\mu}_{BS})/RT$ or ${\sigma}(T)$, while growth of the vacancy agglomeration is proportaional to diffusion of the vacancies and grad ${\mu}_{B}$.

  • PDF

Study on The Calculation of The Stored Energy due to Defects at High-Strain-Rate Deformation Using Molecular Dynamics (분자동역학을 이용한 고변형률하에서 결함으로 인한 저장에너지 계산에 관한 연구)

  • Ryu, Han-Kyu;Choi, Deok-Kee
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1139-1144
    • /
    • 2003
  • This paper addresses a theoretical study to calculate the amount of the stored energy due to vacancies during high-strain-rate deformation. The study concerns the role of excess vacancies, which can play an important role to increase the amount of stored energy. Molecular dynamics simulation using a 3D model is carried out and the result clearly shows that the excess vacancies are credited to generation of the stored energy.

  • PDF

Si-buffer pinholes in the SEPOX (selective poly oxidation) process (SEPOX (selective poly oxidation) process에서 Si-buffer layer에 발생하는 pinhole 현상에 대한 연구)

  • 윤영섭
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.151-157
    • /
    • 1996
  • We propose a mechanism for the formation of pinholes in the Si-buffer layer, through the observations with varying the process- and structure variables in the SEPOX (selective poly-oxidation) process, an isolation method for sub-u DRAMs. Pinholes are formed through the accumulation of Si vacancies generated by the oxidation of Si, in which Si atoms leave the sites (vacancies) at the Si/SiO$_{2}$ interfaces and diffuse into the oxide to be oxidized near interface. In the course of the accumulation of Si-vacancies, the stress induced in the Si-buffer layer affects the migration of vacancies to result in the final size and distribution of pinholes. This paper may be, to our knowledge, the first report about the oxidation-induced pinhole in the Si/SiO$_{2}$ system.

  • PDF

Investigating Drivers of Housing Vacancy in Old Town Incheon using Multi-level Analysis (다층모형을 활용한 인천광역시 원도심 빈집 발생의 영향요인 분석)

  • Lee, Da-Ye
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.2
    • /
    • pp.237-254
    • /
    • 2020
  • Housing vacancies have become a major issue in urban areas, there have been many efforts to address this issue at the national and local levels. The purpose of this paper is to investigate the factors contributing to housing vacancies in old town Incheon in South Korea. In particular, the research focuses on examining the effects of multiple levels of factors on housing vacancies in a comprehensive way; the three levels of factors were identified with a literature review including housing (Level 1), Neighborhood (Level 2), and Region (Level 3). A multi-level logistic regression model was used to examine the relationship between 13 factors in three spatial levels and housing vacancies. As a result, the factors in all three levels were able to explain housing vacancies including site area and shape, proximity to major roads (Level 1), ratio of houses in designated urban renewal area and slope (Level 2), and ratio of the elderly living alone, land price, changes in land price and ratio of new houses (Level 3). These results show that the combination of the physical inferiority of the housing site and the neighborhood environment and the economic and social vulnerability of the region is likely to increases the number of vacant houses. This study also suggested that a multi-dimensional policy strategy is needed to solve the problem of housing vacancies, and urban policies, such as supplying new housing or urban renewal area designation, should be carefully implemented in a way not to create housing vacancies.

Power Enhancement of ZnO-Based Piezoelectric Nanogenerators Via Native Defects Control

  • Kim, Dohwan;Kim, Sang-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.297.2-297.2
    • /
    • 2013
  • Scavenging electricity from wasteful energy resources is currently an important issue and piezoelectric nanogenerators (NGs) based on zinc oxide (ZnO) are promising energy harvesters that can be adapted to various portable, wearable, self-powered electronic devices. Although ZnO has several advantages for NGs, the piezoelectric semiconductor material ZnO generate an intrinsic piezoelectric potential of a few volts as a result of its mechanical deformation. As grown, ZnO is usually n-type, a property that was historically ascribed to native defects. Oxygen vacancies (Vo) that work as donors exist in ZnO thin film and usually screen some parts of the piezoelectric potential. Consequently, the ZnO NGs' piezoelectric power cannot reach to its theoretical value, and thus decreasing the effect from Vo is essential. In the present study, c-axis oriented insulator-like sputtered ZnO thin films were grown in various temperatures to fabricate an optimized nanogenerator (NGs). The purity and crystalinity of ZnO were investigated with photoluminescence (PL). Moreover, by introducing a p-type polymer usually used in organic solar cell, it was discussed how piezoelectric passivation effect works in ZnO thin films having different types of defects. Prepared ZnO thin films have both Zn vacancies (accepter like) and oxygen vacancies (donor like). It generates output voltage 20 time lager than n-type dominant semiconducting ZnO thin film without p-type polymer conjugating. The enhancement is due to the internal accepter like point defects, zinc vacancies (VZn). When the more VZn concentration increases, the more chances to prevent piezoelectric potential screening effects are occurred, consequently, the output voltage is enhanced. Moreover, by passivating remained effective oxygen vacancies by p-type polymers, we demonstrated further power enhancement.

  • PDF

A Material Simulation of High-Strain-Rate Deformation with Dislocations and Vacancies (전위 및 공공을 고려한 고변형률 변형에 대한 재료 시뮬레이션)

  • Choi, Deok-Kee;Ryu, Han-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1306-1313
    • /
    • 2004
  • This paper addresses a theoretical approach to calculate the amount of the stored energy during high strain-rate deformations using atomistic level simulation. The dynamic behavior of materials at high strain-rate deformation are of great interest. At high strain-rates deformations, materials generate heat due to plastic work and the temperature rise can be significant, affecting various properties of the material. It is well known that a small percent of the energy input is stored in the material, and most of input energy is converted into heat. However, microscopic analysis has not been completed without construction of a material model, which can simulate the movement of dislocations and vacancies. A major cause of the temperature rise within materials is traditionally credited to dislocations, vacancies and other defects. In this study, an atomistic material model for FCC such as copper is used to calculate the stored energy.

Degradation of Ferroelectric Properties of Pt/PZT/Pt Capacitors in Hydrogen-containing Environment

  • Kim, Dong-Chun;Lee, Won-Jong
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.5
    • /
    • pp.214-220
    • /
    • 2005
  • The ferroelectric properties of the $Pt/PZT(Pb(Zr,Ti)O_3)/Pt$ capacitors are severely degraded when they are annealed in hydrogen-containing environment. Hydrogen atoms created by the catalytic reaction of Pt top electrode during annealing in hydrogen ambient penetrate into PZT films and generate oxygen vacancies by the reduction of the PZT films, which is likely to cause the degradation. The degree of hydrogen-induced degradation and the direction of voltage shift in P-E curves of the pre-poled PZT capacitors after annealing in hydrogen ambient is dependent on the polarity of the pre-poling voltage. This implies that oxygen vacancies causing hydrogen induced degradation are generated by hydrogen ions having a polarity. The degraded ferroelectricity of the PZT capacitors can be effectively recovered by the shift of oxygen vacancies toward the Pt top electrode interface during post-annealing in oxygen environment with applying negative unipolar stressing.