• Title/Summary/Keyword: VWM consolidation

Search Result 1, Processing Time 0.016 seconds

The Consolidation and Comparison Processes in Visual Working Memory Tested under Pattern-Backward Masking (역행 차폐를 통해 본 시각작업기억의 공고화 및 비교처리 과정)

  • Han, Ji-Eun;Hyun, Joo-Seok
    • Korean Journal of Cognitive Science
    • /
    • v.22 no.4
    • /
    • pp.365-384
    • /
    • 2011
  • A recent study of visual working memory(VWM) under a change detection paradigm proposed an idea that the comparison process of VWM representations against incoming perceptual inputs can be performed more rapidly than the process of forming durable memory representations into VWM. To test this hypothesis, we compared the size of interference effect caused by pattern-backward masks following after either the sample(sample-mask condition) or test items (test-mask condition). In Experiment 1, subjects performed a color change detection task for four colored-boxes, and pattern masks with mask-onset asynchronies(MSOA) of either 64ms or 150ms followed each item location either after the sample or after the test items. The change detection accuracy was both comparable in the sample-mask condition regardless of the MSOAs, whereas the accuracy in the trials with a MSOA of 150ms was substantially higher than the MSOA of 65ms in the test-masking condition. In Experiment 2, we manipulated setsizes to 1, 2, 3, 4 items and also MSOAs to 117ms, 234ms, 350ms, 484ms and compared the pattern of interference across a variety of setsize and MSOA conditions. The sample-mask condition yielded a pattern of masking interference which became more evident as the setsize increases and as the MSOA was shorter. However, this pattern of interference was less apparent in the test-mask condition. These results indicate that the comparison process between remembered items in VWM and perceptual inputs is less vulnerable to interference from pattern-backward masking than VWM consolidation is, and thus support for the recent idea that the comparison process in VWM can be performed very fast and accurately.

  • PDF