• 제목/요약/키워드: VVT

검색결과 24건 처리시간 0.019초

WAVE 를 이용한 VVT 효과가 SI 엔진성능에 미치는 영향에 관한 시뮬레이션 (A Simulation for Indentifying Influence of The VVT Effect on The SI Engine Performance Using WAVE)

  • 임옥택;김대호;두타;처거
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3032-3037
    • /
    • 2008
  • Variable Valve Timing (VVT) system can be used to improve fuel economy, performance and emissions. This study is identified the effect of VVT in terms of wide open throttle torque, Residual gas fraction, volume efficiency. Engine cycle simulations are performed on 2.0L DOHC in-line 4-cylinder SI engine by using WAVE of Ricardo. Results of the simulations had good agreement with WOT torque experimental data, and helped to predict the tendency of performance as the valve timings change. WOT torque was higher when intake valves were closed early for low rpm and late for high rpm.

  • PDF

NONLINEAR MODEL-BASED CONTROL OF VANE TYPE CONTINUOUS VARIABLE VALVE TIMING SYSTEM

  • Son, M.;Lee, M.;Lee, K.;SunWoo, M.;Lee, S.;Lee, C.;Kim, W.
    • International Journal of Automotive Technology
    • /
    • 제8권5호
    • /
    • pp.555-562
    • /
    • 2007
  • The Variable Valve Timing(VVT) system for high performance is a key technology used in newly developed engines. The system realizes higher torque, better fuel economy, and lower emissions by allowing an additional degree of freedom in valve timing during engine operation. In this study, a model-based control method is proposed to enable a fast and precise VVT control system that is robust with respect to manufacturing tolerances and aging. The VVT system is modeled by a third-order nonlinear state equation intended to account for nonlinearities of the system. Based on the model, a controller is designed for position control of the VVT system. The sliding mode theory is applied to controller design to overcome model uncertainties and unknown disturbances. The experimental results suggest that the proposed sliding mode controller is capable of improving tracking performance. In addition, the sliding mode controller is robust to battery voltage disturbance.

가변 밸브타이밍을 위한 신개념 전자기 리니어 엑츄에이터 (A Linear Electromagnetic Motion Device for VVT in Combustion Engine)

  • 김진호
    • 한국정밀공학회지
    • /
    • 제25권9호
    • /
    • pp.53-58
    • /
    • 2008
  • The traditional engine valve train in a combustion engine is the mechanically driven camshaft system that provides one-fixed valve timing. The variable valve timing (VVT), however, is highly required to achieve the significant improvement in fuel economy. To achieve VVT in combustion engine, the solenoid type of actuator had been developed in past years, but it requires current in all operation period, the starting is difficult and the efficiency is low. In this paper, a new linear actuator using permanent magnet (PM) is proposed and verified its feasibility by finite element (FE) analysis.

LPG 예혼합 압축 착화 엔진의 배기가스 및 연소 특성 (Emissions and Combustion Characteristics of LPG HCCI Engine)

  • 염기태;장진영;배충식
    • 한국자동차공학회논문집
    • /
    • 제14권4호
    • /
    • pp.149-156
    • /
    • 2006
  • This paper investigates the steady state combustion characteristics of LPG homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out the benefits in exhaust gas emissions. VVT is one of the attractive ways to control HCCI engine. Hot internal residual gas which is controlled by VVT device, makes fuel is evaporated easily, and ignition timing is advanced. Regular gasoline and liquefied petroleum gas(LPG) were used as main fuel and dimethyl ether(DME) was used as ignition promoter in this research. Operating range and exhaust emissions were compared LPG HCCI engine with gasoline HCCI engine. Operating range of LPG HCCI engine was wider than that of gasoline HCCI engine. The start of combustion was affected by the intake valve open(IVO) timing and the ${\lambda}TOTAL$ due to the latent heat of vaporization, not like gasoline HCCI engine. At rich operation conditions, the burn duration of the LPG HCCI engine was longer than that of the gasoline HCCI engine. CAD at 20% and 90% of the mass fraction burned were also more retarded than that of the gasoline HCCI engine. And carbon dioxide(CO2) emission of LPG HCCI engine was lower than that of gasoline HCCI engine. However, carbon oxide(CO) and hydro carbon(HC) emission of LPG HCCI engine were higher than that of gasoline HCCI engine.

DME를 착화촉진제로 사용한 가솔린 예혼합 압축 착화 엔진의 연소 특성 (Combustion Characteristics of Gasoline HCCI Engine with DME as an Ignition Promoter)

  • 염기태;장진영;배충식
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.178-185
    • /
    • 2006
  • This paper investigates the steady-state combustion characteristics of the Homogeneous charge compression ignition(HCCI) engine with variable valve timing(VVT) and dimethyl ether(DME) direct injection, to find out its benefits in exhaust gas emissions. HCCI combustion is an attractive way to lower carbon dioxide($CO_2$), nitrogen oxides(NOx) emission and to allow higher fuel conversion efficiency. However, HCCI engine has inherent problem of narrow operating range at high load due to high in-cylinder peak pressure and consequent noise. To overcome this problem, the control of combustion start and heat release rate is required. It is difficult to control the start of combustion because HCCI combustion phase is closely linked to chemical reaction during a compression stroke. The combination of VVT and DME direct injection was chosen as the most promising strategy to control the HCCI combustion phase in this study. Regular gasoline was injected at intake port as main fuel, while small amount of DME was also injected directly into the cylinder as an ignition promoter for the control of ignition timing. Different intake valve timings were tested for combustion phase control. Regular gasoline was tested for HCCI operation and emission characteristics with various engine conditions. With HCCI operation, ignition delay and rapid burning angle were successfully controlled by the amount of internal EGR that was determined with VVT. For best IMEP and low HC emission, DME should be injected during early compression stroke. IMEP was mainly affected by the DME injection timing, and quantities of fuel DME and gasoline. HC emission was mainly affected by both the amount of gasoline and the DME injection timing. NOx emission was lower than conventional SI engine at gasoline lean region. However, NOx emission was similar to that in the conventional SI engine at gasoline rich region. CO emission was affected by the amount of gasoline and DME.

VVT용 전자식 흡/배기 밸브 시스템 설계를 위한 해석 및 실험 (The Analysis and Experiments for the Design of Electro-mechanical Variable Valve Train System)

  • 박승현;오성진;이종화;박경석;김도중
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.60-67
    • /
    • 2001
  • As a method of variable valve train(VVT), Electro-Mechanical Valve(EMV) has been studied. Compared with conventional VVT system, the EMV system has a relatively simple structure. The system has two electromagnets, springs and an armature. The system can be operated by reciprocal action between armature and two electromagnets. And, the operating event can be controlled by electrical signal from controller. Therefore, reduction of emission and fuel consumption can be achieved through valve event control at each engine operating condition. In this study, characteristics of EMV system were investigated by simulations and experiments. The results of simulation and experiment show that the core shape and material characteristics are dominant parameters on magnetic force and delay time. In order to apply the system to commercial engine, it has a compact size and high stiffness springs(50N/mm) to increase the valve speed. Because of high valve seating velocity, loud noise and high impact force generated, which can lead to reduction of actuator durability. Therefore, further research is required to reduce valve seating velocity.

  • PDF

EMV시스템의 동특성 분석을 위한 모델 및 실험적 고찰 (The Analytic and Experimental Research on Dynamic Characteristics of EMV System)

  • 박승현;이종화;김도중;박경석
    • 한국자동차공학회논문집
    • /
    • 제10권3호
    • /
    • pp.85-92
    • /
    • 2002
  • This paper presents the effects of design and operating parameters to meet the static and dynamic performances of the electro-mechanical valve(EMV) actuator which can provide more flexible controllability of valve events compared to conventional variable valve actuation devices. The model of the EMV system was also set up and applied to identify the dynamic behavior of the system. And the effects of external disturbances were also investigated such as cylinder pressure, armature neutral position and current supplying time effects and so on. Experiments were carried out to verify the model using the prototype actuator on test bench, it was found that there is a relatively good agreement between experimental data and modeling results. Also, the actuators meet the general engine speed range (over 6000rpm) and the variable valve event control for various VVT effects.

흡배기 밸브시기 동시 변경이 SOHC SI 엔진성능에 미치는 영향 (The Effects of Valve Timing Dual Equal Retard/Advance on Performance in an SOHC SI Engine)

  • 엄인용;이원근
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.30-36
    • /
    • 2003
  • Variable valve timing(VVT) mechanisms are used widely for improving fuel consumption and reducing emissions. Most of application, however, are limited in the DOHC engine. Dual equal retard/advance strategy is relatively simple one and can be applied to both SOHC and DOHC engines. In this study, effects of dual equal valve timing retard/advance are investigated to observe the feasibility of VVT system on an SOHC SI engine. The result shows that fuel economy and emissions are improved in the dual retard condition due to increased internal EGR. Some amount of increase in volumetric efficiency can be achieved by advancing valve timing at low speed and by retarding at high speed. In this case, however, full load power is not so much improved as the volumetric efficiency increases because of severe knock. In the dual advance condition, there is no merit in the fuel economy and emission.

가솔린 예혼합 압축 착화 엔진의 농후 한계에서 연소와 노킹 특성 (Knocking and Combustion Characteristics at Rich Limit of Gasoline HCCI Engine)

  • 염기태;장진영;배충식
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.9-16
    • /
    • 2006
  • Variable valve timing is one of the attractive ways to control homogeneous charge compression ignition (HCCI) engine. Hot internal residual gas which can be controlled by variable valve timing(VVT) device, makes fuel evaporated easily, and ignition timing advanced. Regular gasoline was used as main fuel and di-methyl ether(DME) was used as ignition promoter in this research. HCCI engine operating range is limited by high combustion peak pressure and engine noise. High combustion pressure can damage the engine during operation. To avoid engine damage, the rich limits have to define using various methods. Peak combustion pressure, rate of cylinder pressure rise was considered to determine rich limit of engine operating range. Knock probability was correlated with the rate of cylinder pressure rise as well as the peak combustion pressure.