• Title/Summary/Keyword: VTCI

Search Result 3, Processing Time 0.017 seconds

Analysis of Relationship between Land Cover Change and Vegetation Temperature Condition Index in Central Dry Zone of Myanmar (미얀마 건조지 토지피복 변화와 식생온도조건지수간의 관계분석)

  • Choi, Sol-E;Lee, Woo-Kyun;Yu, Hangnan;Kang, Ho-Duck;Kim, Yong-Suk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.17 no.2
    • /
    • pp.82-94
    • /
    • 2014
  • The purpose of this study is to investigate the cause of increasing dry zones through analyzing relationships between land cover and Vegetation Temperature Condition Index(VTCI) using Landsat 4-5 TM satellite images in Central Dry Zones of Myanmar. As a result of land cover classifications, while vegetation areas gradually decrease, residential area and cropland were increased. VTCI analysis shows that region (a) showed a gradual decrease in the area of severely arid, and increase in the area of moderate dry and wet, which sums up to a slight decrease in aridity. Region (b) also showed to increase in dry areas and severe aridity. The result of relational analysis between VTCI and land cover change showed high ratio of land cover change, from severe arid area to forest and residential farmland. The average VTCI decreased in the changed land covers, which indicates the relationship between aridity and land cover change and a gradual increase in the arid area was identified.

Feasibility of Vegetation Temperature Condition Index for monitoring desertification in Bulgan, Mongolia

  • Yu, Hangnan;Lee, Jong-Yeol;Lee, Woo-Kyun;Lamchin, Munkhnasan;Tserendorj, Dejee;Choi, Sole;Song, Yongho;Kang, Ho Duck
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.6
    • /
    • pp.621-629
    • /
    • 2013
  • Desertification monitoring as a main portion for understand desertification, have been conducted by many scientists. However, the stage of research remains still in the level of comparison of the past and current situation. In other words, monitoring need to focus on finding methods of how to take precautions against desertification. In this study, Vegetation Temperature Condition Index (VTCI), derived from Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST), was utilized to observe the distribution change of vegetation. The index can be used to monitor drought occurrences at a regional level for a special period of a year, and it can also be used to study the spatial distribution of drought within the region. Techniques of remote sensing and Geographic Information System (GIS) were combined to detect the distribution change of vegetation with VTCI. As a result, assuming that the moisture condition is the only main factor that affects desertification, we found that the distribution of vegetation in Bulgan, Mongolia could be predicted in a certain degree, using VTCI. Although desertification is a complicated process and many factors could affect the result. This study is helpful to provide a strategic guidance for combating desertification and allocating the use of the labor force.