• Title/Summary/Keyword: VT-NMR

Search Result 2, Processing Time 0.015 seconds

Temperature-dependent studies on catalytic hydrosilation of polyalkylsiloxane using NMR

  • Sul, Hyewon;Lee, Tae Hee;Lim, Eunsoo;Rho, Yecheol;Kim, Chong-Hyeak;Kim, Jeongkwon
    • Analytical Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.213-219
    • /
    • 2017
  • Polyalkylsiloxane has been spotlighted in pressure-sensitive adhesive (PSA) application due to excellent physical properties and good biocompatibility. Thermal behaviour of polyalkylsiloxane mixtures, such as thermal stability and heat flow, were studied using TG-DTA during catalytic hydrosilation. To understand reaction kinetics of cross-linking, catalytic hydrosilation of polyalkylsiloxane was monitored using variable temperature nuclear magnetic resonance (VT-NMR) as increased temperature. The formation of cross-linking bond $Si-CH_2-CH_2-Si$ was directly observed using distortionless enhanced by polarization transfer (DEPT) technique. Successfully polyalkylsiloxane PSA samples exhibited excellent adhesion properties by cross-linking reaction.

$^{17}O$ NMR Study On Water Excharge Rate of Paramagnetic Contrast Agents ($^{17}O$ NMR 기법을 이용한 상자성 자기공명조영제의 물분자 교환에 관한 연구)

  • Yongmin Chang;Sung Wook Hong;Moon Jung Hwang;Il Soo Rhee;Duk-Sik Kang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.5 no.1
    • /
    • pp.33-37
    • /
    • 2001
  • Purpose : The water exchange rate between bulk water and bound water is an important parameter in deciding the efficiency of paramagnetic contrast agents. In this study, we evaluated the water exchange rates of various Gd-chelates using oxygen-17 NMR technique. Material and Methods : The samples (Gd-DTPA, Gd-DTPA-BMA, Gd-DOTA, Gd-EOB-DTPA) were prepared by mixing 5% $^{17}O-enriched$ water (Isotech, USA). The pH of the samples was adjusted to physiological value [pH=7.0] by buffer solution. The variable temperature $^{17}O-NMR$ measurements were performed using Bruker-600 (14.1 T, 81.3 MHz) spectrometer. Bruker VT-1000 temperature control units were used to stabilize the temperature. The $^{17}O$ spin-spin relaxation times (T2) were measured using Carr-Purcell-Meiboom-Gill (CPMG)I pulse sequence with 24 echo trains. The variable temperature T2 relaxation data were then fitted into Solomon-Bloembergen equations using least square fit algorithm to estimate the water exchange times. Results : From the measured $^{17}O-NMR$ relaxation rates, the determined water exchange rates at 300K are $0.42{\;}{\mu}s$ for Gd-DTPA, $1.99{\;}{\mu}s$ for Gd-DTPA-BMA, $0.27{\;}{\mu}s$ for Gd-DOTA, and $0.11{\;}{\mu}s$ for Gd-EOB-DTPA. The Gd-DTPA-BMA showed slowest exchange whereas Gd-EOB-DTPA had fastest water exchange rate. In addition, it was found that the water exchange rates (${\tau}_m$) of all samples had exponential temperature dependence with different decay constant. Conclusion : $^{17}O-NMR$ relaxation rate measurements, when combined with variable temperature technique, provide a solid tool for studying water exchange rate, which is very important in investigating the detailed mechanism of relaxation enhancement effect of the paramagnetic contrast agents.

  • PDF