• Title/Summary/Keyword: VSC 가변구조제어

Search Result 45, Processing Time 0.025 seconds

Design of Self-Repairing Suspension Systems via Variable Structure Control Scheme (가변구조 제어기법을 이용한 고장허용 현가장치 설계)

  • 김도현
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.922-927
    • /
    • 2002
  • A variable structure control (VSC) based model following control system that possesses fault detection and isolation (FDI) capability as well as fault tolerance property is proposed. The nonlinear part of the proposed control law. whose magnitude is determined by sliding variables, plays the role of suppressing fault effect. Thus, approximate fault reconstruction is also possible via the analysis of sliding variables. The proposed algorithm is applied to an active suspension system of pound vehicles to verify its applicability.

Design of fuzzy logic controller based on adaptive variable structure controller (적응 가변구조 개념을 이용한 퍼지 제어기의 설계)

  • 박귀태;이기상;박태홍;배상욱;김성호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.382-386
    • /
    • 1992
  • In this paper, the author proposed FLVSC(Fuzzy Logic Variable Structure Controller), of which control rules are extracted from the concepts of VSC(Variable Structure Control). FLC(Fuzzy Logic Controller) based on linguistic rules has the advantages of not needing of some exact mathematical model for plant to be controlled. The proposed method has the characteristics which are viewed in conventional VSC, e.g. insensitivity to a class of disturbances, parameter variations and uncertainties in sliding mode. In addition, the method has the properties of FLC - noise rejection capability etc. The computer simulations have been carried out for a DC servo motor to show the usefulness of the proposed method and the effects of disturbances and parameter variations are considered.

  • PDF

Position Control of a Hydraulic System Subjected to Disturbances Using a Variable Structure Controller (가변구조제어기를 이용한 외란을 받는 유압시스템의 위치제어)

  • 박근석;김형의
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.915-921
    • /
    • 2004
  • In this paper, a variable structure controller(VSC) is used to control the position of the hydraulic servo system subjected to unknown disturbances. The system consists of two cylinders, which connected in series. One cylinder executes position control, the other executes force control to generate disturbances. In order to control each cylinder, interaction must be considered between two cylinders because two cylinders are connected in series. Therefore, the controller is designed regarding interaction between two cylinders as disturbances. Performance of the proposed controller was verified through experiments and compared to PID controller. The experiments showed that the proposed controller had a good performance and robustness.

A variable structure controller with a PI-type reaching law (PI 형 도갈법칙을 가지는 가변구조 제어)

  • Chun, Kyung-Han;Lee, Yun-Jung;Choi, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.214-218
    • /
    • 1997
  • We propose a VSC(Variable Structure Controller) with a PI-type reaching law. In General, conventional VSCs with a reaching law including a discontinuous term have the chattering problem, and thus the system may be unstable due to the disregarded high frequency dynamics in the modeling process. To resolve this problem, the PI-type reaching law is proposed in this paper. The proposed reaching law makes it easy to determine the reaching dynamics as well as the reaching time by utilizing the 2nd-order system analysis. Furthermore, since the discontinous term is not involved in the reaching law, the chattering is considerably reduced. To show the effectiveness of the proposed scheme, the stability of the proposed system is proved by Lyapunov method and the computer simulations are performed for the Ball Balance System.

  • PDF

Effect Analysis On Selection of VSC Parameters by Manipulator Dynamic Constraints (매니퓰레이터의 동력학적 제한조건이 가변구조 제어 파라메타 선정에 미치는 영향 분석)

  • Lee, Hong-Kyu;Lee, Kang-Wong;Choi, Keh-Kun
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.45-48
    • /
    • 1988
  • This paper reveals the relation hereon the robot system dynamic constraints and the VSC parameters, and analyzes the effect on the trajectory of the joint angle and the hand when the result of the relation analysis is applied to the robot system control. The result of the analysis in this paper is applied effectively to the path tracking control and the trajectory planning using the VSC method.

  • PDF

The multiple Control Law Design of the Variable Structure Control for Angular Position Control of the Robot Arm with an Indirect Driving Joint Using Balance of the Inertial Moment (관성모멘트의 균형을 이용하는 간접구동관절을 갖는 로보트아암의 각위치 제어를 위한 가변구조제어기의 다중 제어법칙 설계)

  • Kim, Joong-Wan;Kang, Dae-Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.76-83
    • /
    • 1996
  • We have developed the unconventional robot arm which is composed of the two main parts, one is a ball screw and the other is a robot arm. The dynamic systems of the robot arm and ball screw are unstable systems coupled with each other. The ball screw mechanism is unstable system but controllable system. The robot arm's dynamics is quasi stable system when ball screw's angular position is zero, else, unstable system. Our system has the duality between stability and controllability at the view point of control. This duality causes difficulty to control of the robot arm using normal control law. We have investigated the location of the characteristic roots of the dynamic equation. And we have found out that the best condition for the control of the arm is quasi stable state. In this paper, we have proposed multiple control laws which are consist of three components to guarantee the stability and controllability simultaneously. The computer simulations were carried out based on VSC about the angular position control of the robot arm, and it is confirmed that the good performances could be obtained by using new controller.

  • PDF

Design of Fuzzy Logic Servo Controller Based on Variable Structure Control (가변구조 개념을 이용한 서보용 퍼지제어기의 설계)

  • 박태홍;배상욱;김성호;박기상;박귀태
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.809-818
    • /
    • 1994
  • In this paper , the author proposed FLVSC (Fuzzy Logic Variable Structure Controller),of which control rules are extracted from the concepts of VSC(Variable Structure Control). FLC(Fuzzy Logic Controller) based on linguistic rules has the advantages of not needing of some exact mathematical model for plant to be controlled. The proposed method has the characteristics which are viewed in conventional VSC, e.g. insensitivity to a class of disturbances, parameter variations and uncertainties in sliding mode. In addition, the method has the properties of FLC-noise rejection capability etc. The computer simulations have been carried out for position control of DC servo motor to show the usefulness of the proposed method and the effects of disturbances and parameter variations are considered.

VSC with three-segment nonlinear sliding mode for robot manipulator (로봇 매니퓰레이터를 위한 삼분 비선형 슬라이딩 모드를 가지는 가변구조 제어)

  • 최성훈;전경한;최봉열
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.69-72
    • /
    • 1996
  • In this paper robust tracking control scheme using the new three-segment nonlinear sliding mode technique for nonlinear rigid robotic manipulator is developed. Sliding mode consists of three segments, the promotional acceleration segment, the constant velocity segment and the deceleration segment using terminal sliding mode. Strong robustness and fast error convergence can be obtained for rigid robotic manipulators with large uncertain dynamics by using the new three-segment nonlinear sliding mode technique together with a few useful structural properties of rigid robotic manipulator. The efficiency of the proposed method for the tracking has been demonstrated by simulations for two-link robot manipulator.

  • PDF

A Design of Cruise Control System for Automated Vehicle using Variable Structure Control Method (가변구조 제어 기법을 이용한 차량 순항 제어기 설계)

  • Lim, Jung-Taek;Choi, Won-Chul;Kim, Young-Joong;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2173-2175
    • /
    • 2003
  • This paper presents a cruise control system design using variable structure control (AVCS) is an important part of the intelligent vehicle and highway systems (IVHS). A vehicle desired acceleration profile has been designed based on the vehicle speed and distance control algorithm. Cruise control system has been designed using VSC theory for which we propose a moving switching surface(MSS). It has been shown that the proposed control system can provide satisfactory performance. Simulation results are given to show the effectiveness of this controller.

  • PDF

Design of Adaptive Fuzzy Sliding Mode Controller for Chattering Reduction (채터링 감소를 위한 적응 퍼지 슬라이딩 모드 제어기의 설계)

  • Seo, Sam-Jun;Kim, Dong-Won;Park, Gwi-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.752-758
    • /
    • 2004
  • In this paper, we proposed an adaptivefuzzy sliding control algorithm using gradient descent method to reduce chattering phenomenon which is viewed in variable control system. In design of FLC, fuzzy control rules are obtained from expert's experience and intuition and it is very difficult to obtain them. We proposed an adaptive algorithm which is updated by consequence part parameter of control rules in order to reduce chattering phenomenon and simultaneously to satistfy the sliding mode condition. The proposed algorithm has the characteristics which are viewed in conventional VSC, e.g. insensitivity to a class of disturbance, parameter variations and uncertainties in the sliding mode. To demonstrate its performance, the proposed control algorithm is applied to an inverted pendulum system. The results show that both alleviation of chattering and performance are achieved.