• Title/Summary/Keyword: VS growth mechanism

Search Result 29, Processing Time 0.024 seconds

Growth of Nano- and Microstructured Indium Nitride Crystals by the Reaction of Indium Oxide with Ammonia

  • Jung, Woo-Sik;Ra, Choon-Sup;Min, Bong-Ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.9
    • /
    • pp.1354-1358
    • /
    • 2005
  • Nano- and microstructured indium nitride crystals were synthesized by the reaction of indium oxide ($In_2O_3$) powder and its pellet with ammonia in the temperature range 580-700 ${^{\circ}C}$. The degree of nitridation of $In_2O_3$ to InN was very sensitive to the nitridation temperature. The formation of zero- to three-dimensional structured InN crystals demonstrated that $In_2O_3$ is nitridated to InN via two dominant parallel routes (solid ($In_2O_3$)-to-solid (InN) and gas ($In_2O$)-to-solid (InN)). The growth of InN crystals with such various morphologies was explained by the vapor-solid (VS) mechanism where the degree of supersaturation of In vapor determines the growth morphology and the vapor was mainly by the reaction of $In_2O$ with ammonia and partially by sublimation of solid InN. The pellet method was proven to be useful to obtain homogeneous InN nanowires.

Growth of ZnO Nanorod Using VS Method (기상증착공정에 의한 산화아연 나노로드의 성장)

  • Kim, Na-Ri;Kim, Jae-Soo;Byun, Dong-Jin;Rho, Dae-Ho;Yang, Jae-Woong
    • Korean Journal of Materials Research
    • /
    • v.13 no.10
    • /
    • pp.668-672
    • /
    • 2003
  • The ZnO nanorods were synthesized using vapor-solid (VS) method on sodalime glass substrate without the presence of metal catalyst. ZnO nanorods were prepared thermal evaporation of Zn powder at $500^{\circ}C$. As-fabricated ZnO nanorods had an average diameter and length of 85 nm and 1.7 $\mu\textrm{m}$. Transmission electron microscopy revealed that the ZnO nanorods were single crystalline with the growth direction perpendicular to the (101) lattice plane. The influences of reaction time on the formation of the ZnO nanorods were investigated. The photoluminescence measurements showed that the ZnO nanorods had a strong ultraviolet emission at around 380 nm and a green emission at around 500 nm.

Can Dining Alone Lead to Healthier Menu Item Decisions than Dining with Others? The Roles of Consumption Orientation and Menu Nutrition Information (혼밥이 건강한 메뉴 선택에 미치는 영향: 소비 목적 지향과 메뉴 영양 정보 표시의 역할)

  • Her, EunSol;Behnke, Carl;Almanza, Barbara
    • Korean Journal of Community Nutrition
    • /
    • v.26 no.3
    • /
    • pp.155-166
    • /
    • 2021
  • Objectives: Driven by a growth of single-person households and individualized lifestyles, solo dining in restaurants is an increasingly recognizable trend. However, a research gap exists in the comparison of solo and group diners' menu-decision making processes. Based on the self-control dilemma and the temporal construal theory as a theoretical framework, this study compared the ordering intentions of solo vs. group diners with healthy vs. indulgent (less healthy) entrées. The mediating role of consumption orientation and the moderating role of amount of menu nutrition information were further explored to understand the mechanism and a boundary condition. Methods: A scenario-based online survey was developed using a 2 (dining social context: solo vs. with others) × 3 (amount of menu nutrition information: no nutrition information vs. calories vs. calories/fat/sodium), between-subjects, experimental design. Consumers' level of nutrition involvement was controlled. A nationwide survey data (n = 224) were collected from a crowdsourcing platform in the U.S. Data were analyzed using multivariate analysis of covariance, independent t-test, univariate analysis of covariance, and moderated mediation analyses. Results: Findings reveal that solo (vs. group) diners have less (vs. more) intentions to order indulgent menu items due to a more utilitarian (vs. more hedonic) consumption orientation in restaurant dining. Findings also show that solo (vs. group) diners have more (vs. less) intentions to order healthy menu items when the restaurant menu presented nutrition information including calories, fat, and sodium. Conclusions: The findings contribute to the literature of foodservice management, healthy eating, and consumer behavior by revealing a mechanism and an external stimuli of solo vs. group diners' healthy menu-decision making process in restaurants. Furthermore, the findings provide restauranteurs and health professionals with insights into the positive and negative impacts of menu nutrition labelling on consumers' menu-decisions.

Synthesis and optical properties of star-like ZnO nanostructures grown on with carbon catalyst (탄소 촉매에 의하여 성장된 별-모양 ZnO 나노 구조물의 합성과 광학적 특성)

  • Jung, Il-Hyun;Chae, Myung-Sic;Lee, Ui-Am
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.2
    • /
    • pp.1-6
    • /
    • 2010
  • Star-like ZnO nanostructures were grown on SI(100) substrates with carbon(C) catalyst by employing vapor-solid(VS) mechanism. The morphologies and structure of ZnO nanostructures were investigated by Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and Raman spectrum, Photoluminescence spectrum. The results demonstrated that the as-synthesized products consisted of star-like ZnO nanostructure with hexagonal wurtzite phase. Nanostructures grown at 1100 were mainly star-like in structure with diameters of 500 nm. The legs of the star-like nanostructures were preferentially grown up along the [0001] direction. A vapor.solid (VS) growth mechanism was proposed to explain the formation of the star-like structures. Photoluminescence spectrum exhibited a narrow emission band peak around 380 nm and a broad one around 491 nm. Raman spectrum of the ZnO nanostructures showed oxygen defects in ZnO nanostructures due to the existence of Ar gas during the growth process, leading to the dominant green band peak in the PL spectrum.

Synthesis of Silicon Carbide Whiskers (II): Stacking Faults (탄화규소 휘스커의 (II): 적층결함)

  • 최헌진;이준근
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.36-42
    • /
    • 1999
  • Stacking faults in SiC whiskers grown by three different growth mechanisms; vapor-solid(VS), two-stage growth(TS), and vapor-liquid-solid (VLS) mechanism in the carbothermal reduction system were investigated by X-ray diffraction(XRD) and transmission electron microscopy (TEM). The content of stacking faults in SiC whiskers increased with decreasing the diameter of whiskers, i.e., the small diameter whiskers (<1 $\mu\textrm{m}$) grown by the VS, TS, and VLS mechanisms have heavy stacking faults whereas the large diameter whiskers(>2$\mu\textrm{m}$) grown by the VLS mechanism have little stacking faults. Heavy stacking faults of small diameter whiskers was probably due to the high specific lateral surface area of small diameter whiskers.

  • PDF

Growth of SiC Nanowire Using Carbothermal Reduction Method (열탄화법을 사용한 탄화규소 나노와이어의 성장)

  • Rho, Dae-Ho;Kim, Jae-Soo;Byun, Dong-Jin;Yang, Jae-Woong;Kim, Na-Ri
    • Korean Journal of Materials Research
    • /
    • v.13 no.10
    • /
    • pp.677-682
    • /
    • 2003
  • SiC nanowires were synthesized by carbothermal reduction using metal catalysts. Synthesized nanowires had mean diameters of 30∼50 nm and several $\mu\textrm{m}$ length. The kind of catalysts affects form of SiC nanowire because of difference of growth mechanisms. These differences were made by catalyst's physical property and relative activities to the source gas. Ni acted a conventional catalyst of VLS growth mechanism. But, Case of Fe, SiC nanowire was grown by stable VLS growth mechanism without relation of growth conditions. SiC nanowire was grown by two step growth model using Cr catalyst. Conversion ratios to the SiC nanowire were increased with growth conditions. Case of Cr, conversion ratio was about 45% that was higher than other catalyst used. This high conversion ratio was obtained by the addition VS growth to radial direction on the as-grown nanowires.

Synthesis of Single-Crystalline InSb Nanowires Using CVD Method and Study of Growth Mechanism in Open and Close System (CVD 방법을 이용한 단결정 InSb 나노와이어의 성장과 Open/Close 시스템에서의 반응 메커니즘 연구)

  • Kang, Eun Ji;Park, Yi-Seul;Lee, Jin Seok
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.6
    • /
    • pp.306-312
    • /
    • 2013
  • Single-crystalline InSb nanowire was synthesized on $SiO_2$ wafer via vapor-liquid-solid (VLS) mechanism using chemical vapor deposition method. According to the source container system (open or close) which contain InSb powder and $SiO_2$ wafer, the single-crystalline InSb nanowires have different growth mechanisms. Structural characterization of the InSb nanowires was examined by scanning electron microscope (SEM). Composition of the nanowires was investigated using x-ray diffraction (XRD) and energy dispersive x-ray spectroscopy (EDS). This study demonstrates that length and diameter of the InSb nanowires are long and thick using open-boat system by VLS and additional vapor-solid (VS) mechanisms, because open-boat system can carry a large amount of vapor-phase InSb precursor than close-boat system.

Morphology Control of Single Crystalline Rutile TiO2 Nanowires

  • Park, Yi-Seul;Lee, Jin-Seok
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3571-3574
    • /
    • 2011
  • Nano-scaled metal oxides have been attractive materials for sensors, photocatalysis, and dye-sensitization for solar cells. We report the controlled synthesis and characterization of single crystalline $TiO_2$ nanowires via a catalyst-assisted vapor-liquid-solid (VLS) and vapor-solid (VS) growth mechanism during TiO powder evaporation. Scanning electron microscope (SEM) and transmission electron microscope (TEM) studies show that as grown $TiO_2$ materials are one-dimensional (1D) nano-structures with a single crystalline rutile phase. Also, energy-dispersive X-ray (EDX) spectroscopy indicates the presence of both Ti and O with a Ti/O atomic ratio of 1 to 2. Various morphologies of single crystalline $TiO_2$ nano-structures are realized by controlling the growth temperature and flow rate of carrier gas. Large amount of reactant evaporated at high temperature and high flow rate is crucial to the morphology change of $TiO_2$ nanowire.

Growth and Characterization of P-type Doping for InAs Nanowires during Vapor-liquid-solid and Vapor-solid Growth Mechanism by MOCVD

  • Hwang, Jeongwoo;Kim, Myung Sang;Lee, Sang Jun;Shin, Jae Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.328.2-328.2
    • /
    • 2014
  • Semiconductor nanowires (NWs) have attracted research interests due to the distinct physical properties that can lead to variousoptical and electrical applications. In this paper, we have grown InAs NWs viagold (Au)-assisted vapor-liquid-solid (VLS) and catalyst-free vapor-solid (VS) mechanisms and investigated on the p-type doping profile of the NWs. Metal-organic chemical vapor deposition (MOCVD) is used for the growth of the NWs. Trimethylindium (TMIn) and arsine (AsH3) were used for the precursor and diethyl zinc (DEZn) was used for the p-type doping source of the NWs. The effectiveness of p-type doping was confirmed by electrical measurement, showing an increase of the electron density with the DEZn flow. The structural properties of the InAs NWs were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). In addition, we characterize atomic distribution of InAs NWs using energy-dispersive X-ray spectroscopy (EDX) analysis.

  • PDF