• Title/Summary/Keyword: VOCs in air

Search Result 598, Processing Time 0.034 seconds

The Development of Exposure Assessment Tools for Risk Assessment of Volatile Organic Compounds (VOCs의 위해성 평가를 위한 노출분석 방법 연구)

  • Jo, Seong-Joon;Shin, Dong-Chun;Chung, Yong;Lee, Duck-Hee;Breysse, Patrick N.
    • Environmental Analysis Health and Toxicology
    • /
    • v.17 no.2
    • /
    • pp.147-160
    • /
    • 2002
  • Volatile organic compounds (VOCs) are an important public health issue in Korea and many important questions remain to be addressed with respect to assessing exposure to these compounds. Because they are ubiquitous and highly volatile, special techniques must be applied in their analytic determination Valid Personal exposure assessment methods are needed to evaluate exposure frequency, duration and intensity, as well as their relationship to personal exposure characteristics. Biological monitoring is also important since it may contribute significantly in risk assessment by allowing the estimation of effective absorbed doses. This study was on ducted to establish the environmental measurement, personal dosimetry and biological monitoring methods for VOCs. These methods are needed to compare blood, urinary and exhalation breath VOC levels and to provide tools for risk assessment of VOC exposure. Passive monitors (badge type) and a active samplers (trap) for the VOCs collection were used for air sampling. Methods development included determining the minimum detectable amounts of VOCs in each media, as well as evaluating collection methods and developing analytical procedures. Method reliability was assessed by determining breakthrough volumes and comparing results between laboratories and with other methods. A total capacity of trap used in this study was 60ι. Although variable by compound, the average breakthrough was 20%. Also, there was no loss of compounds in trap even if keep for 45 day in -7$0^{\circ}C$. The recovery of active and passive methods was 69% ~ 126% and method detection limit was 0.24 $\mu\textrm{g}$/trap and 0.07 $\mu\textrm{g}$/badge. There was no statistical difference (P > 0.05) between active and passive methods.

Tendency of the indoor pollutants along with increased dwelling period at new apartments (거주기간 증가에 따른 신축 공동주택의 실내오염도 변화추이)

  • Jang, Seong Ki;Ryu, Jung Min;Seo, Soo Yun;Lim, Jung Yeon;Lee, Woo Seok
    • Analytical Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.453-459
    • /
    • 2007
  • This study is for investigation of indoor conditions with air contamination after occupation 120 households in brand-new apartments by measuring the concentration of VOCs and carbonyl compounds. It has been found that TVOC (total volatile organic compounds; TVOCs) were $688.61{\mu}g/m^3$ after moving in. And formaldehyde, toluene, m, p-xylene, acetone and ethylbenzene were $158.56{\mu}g/m^3$, $146.58{\mu}g/m^3$, $69.28{\mu}g/m^3$, $63.80{\mu}g/m^3$ and $29.65{\mu}g/m^3$, respectively. The mean concentrations of indoor air pollutants tend to decrease along an increase dwelling period. But, the mean concentration of d-limonene increased from 2 months to 10 months. Also, toluene, ethylbenzene, m, p, o-xylene amounted to 38.8 % among VOCs studied, this ratio tend to decrease along with and increased dwelling period.

Characteristics of Atmospheric Concentrations of Volatile Organic Compounds at a Heavy-Traffic Site in a Large Urban Area (대도시 교통밀집지역 도로변 대기 중 휘발성유기화합물의 농도분포 특성)

  • 백성옥;김미현;박상곤
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.2
    • /
    • pp.113-126
    • /
    • 2002
  • This study was carried out to evaluate the temporal (daily, weekly, and seasonal) variations of volatile organic compounds (VOCs) concentrations at a road-side site in a heavy-traffic central area of Metropolitan Taegu. Ambient air sampling was undertaken continuously for 14 consecutive days in each of four seasons from the spring of 1999 to the winter of 2000. The VOC samples were collected using adsorbent tubes, and were determined by thermal desorption coupled with GC/MS analysis. A total of 10 aromatic VOCs of environmental concern were determined, including benzene, toluene, ethylbenzene, m+p-xylenes, styrene, o-xylene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, and naphthalene. Among 10 target VOCs, the most abundant compounds appeared to be toluene (1.5 ∼ 102 ppb) and xylenes (0.1 ∼ 114 ppb), while benzene levels were in the range of 0.3 ∼6 ppb. It was found that the general trends of VOC levels were significantly dependent on traffic conditions at the sampling site since VOC concentrations were at their maximum during rush hours (AM 7∼9 and PM 7 ∼9). However, some VOCs such as toluene, xylenes, and ethylbenzene were likely to be affected by a number of unknown sources other than vehicle exhaust, being attributed to the use of paints, and/or the evaporation of solvents used nearby the sampling site. In some instances, extremely high concentrations were found for these compounds, which can not be explained solely by the impact of vehicle exhaust. The results of this study may be useful for estimating the relative importance of different emission sources in large urban areas. Finally, it was suggested that the median value might be more desirable than the arithmetic mean as a representative value for the VOC data group, since the cumulative probability distribution (n=658) does not follow the normal distribution pattern.

Survey on Public Responses to Odor Produced at Jangrim-Sinpyoeng Municipal and Industrial Wastewater Treatment Plant in Busan (신평장림 공단 폐수처리장 발생의 악취 조사연구)

  • Son, Hyun-Keun;Sivakumar, Subpiramaniyam;Yoon, Young-Hun
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.3
    • /
    • pp.201-208
    • /
    • 2011
  • Objective: Emissions of volatile organic compounds (VOCs) from municipal wastewater treatment plants and industrial wastewater are often overlooked as sources of exposure to toxic chemicals. VOCs from such sources evaporate readily into the air and may have significantly adverse impacts on public health. The present study aimed to establish the concentration of VOCs released from Jangrim-sinpyoeng Municipal and Industrial Wastewater Treatment plant (JWTP) in Busan, South Korea and assess the causes of the odor/stench in the surrounding residential facilities. Stench intensity, frequency and release time, and wind direction were also monitored. Methods: Onsite data were collected on a daily basis from a laboratory located on the JWTP premises through a period spanning 2006 to 2010. A second set of data was obtained in 2006 by conducting a questionnaire survey with 210 respondents living near JWTP. The experimental and survey data were analysed statistically using the SPSS package. Results: The survey results showed that people residing around JWTP strongly perceive a stench from the plant. The intensity of the stench was influenced significantly by wind direction and the location of the apartments facing the JWTP. Public participation formed a significant step in determining the quality of the study environment. Conclusion: Onsite data and survey data obtained in 2006 indicate that the nature of the odor experienced by residents is due to the intensity of total VOCs released by JWTP. However, additional research is needed to determine the effects of the VOC pollution on public health and quality of life.

Modeling Human Exposure Levels to Airborne Volatile Organic Compounds by the Hebei Spirit Oil Spill

  • Kim, Jong-Ho;Kwak, Byoung-Kyu;Ha, Min-A;Cheong, Hae-Kwan;Yi, Jong-Heop
    • Environmental Analysis Health and Toxicology
    • /
    • v.27
    • /
    • pp.8.1-8.10
    • /
    • 2012
  • Objectives: The goal was to model and quantify the atmospheric concentrations of volatile organic compounds (VOCs) as the result of the Hebei Spirit oil spill, and to predict whether the exposure levels were abnormally high or not. Methods: We developed a model for calculating the airborne concentration of VOCs that are produced in an oil spill accident. The model was applied to a practical situation, namely the Hebei Spirit oil spill. The accuracy of the model was verified by comparing the results with previous observation data. The concentrations were compared with the currently used air quality standards. Results: Evaporation was found to be 10- to 1,000-fold higher than the emissions produced from a surrounding industrial complex. The modeled concentrations for benzene failed to meet current labor environmental standards, and the concentration of benzene, toluene, orthometa- para-xylene were higher than the values specified by air quality standards and guideline values on the ocean. The concentrations of total VOCs were much higher than indoor environmental criteria for the entire Taean area for a few days. Conclusions: The extent of airborne exposure was clearly not the same as that for normal conditions.

Characteristics of VOCs and Formaldehyde Emitted from Floorings (바닥재로부터 방출되는 휘발성유기화합물과 폼알데하이드 특성)

  • Park, Hyun-Ju;Jang, Seong-Ki;Seo, Soo-Yun;Lim, Jun-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.1
    • /
    • pp.38-45
    • /
    • 2009
  • Since the seventies and the oil crisis, energy-saving measures have led to a reduction in the ventilation of room. The use of synthetic materials which emit various chemical substances had led to an increase in the concentration of indoor pollutants. "Sick building syndrome (SBS)" and "Sick house syndrome (SHS)" are worldwide problems. Also, the number of complaints about indoor air pollution caused by VOCs (Volatile organic compound) and HCHO (Formaldehyde) has increased. It is important that evaluating and understanding emission of indoor air pollutant from building materials. The object of this study was to evaluate emission test method for flooring such as wood based flooring, carpet tile, rubber tile, PVC sheet and tile, and to determine emission of TVOC and form-aldehyde. The quantity of TVOC and carbonyl compounds emission were sampled and measured by Tenax TA and gas chromatography/mass spectrometry (GC/MSD), 2,4-DNPH cartrige with ozone scrubber and high performance liquid from flooring. The TVOC concentration emitted from carpet tile was ($7.419\;mg/m^2 h$) the highest among 5 groups of test materials. In wood based flooring and PVC tile, the emitted concentration of toluene was high. And the dodecane emission was highest in carpet. The concentration of TVOC decreased by an increase in emission test period. After 7 days, the concentration of TVOC from floorings were about 50% below of the concentration at the first day. TVOC emission from wood based flooring, carpet tile, rubber tile, PVC sheet and tile were decreased in 28 days and remained steady after about 15 days. The concentration of formaldehyde emission from floorings showed extremely low.

A Study on the Air Quality of Indoor Screen Golf in Seoul (수도권 일부지역의 실내 스크린골프장의 공기질 평가)

  • Jo, Ho-Dong;Roh, Jae-Hoon;Kim, Chi-Nyon;Sim, Sang-Hyo;Won, Jong-Uk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.20 no.3
    • /
    • pp.192-202
    • /
    • 2010
  • This study aimed to suggest the severity of indoor air pollutants in screen gold arenas which were not sufficiently investigated in Korea up to now and to help users to enjoy golf in more pleasant indoor environment. The indoor environment survey was conducted with 21 screen gold arenas in Seoul from Oct. 28, 2008 to March 13, 2009. Indoor air quality was measured and analyzed in accordance with the Air Pollution Process Test Method specified bu NIOSH(2005). The screen golf arenas are mostly in the underground floors in this study, 4 on the ground floors(19.0%) and 17 in the underground floors(81.0%). In the air in screen golf arenas, the geometric mean of benzene, toluene, ethylbenzene and xylene were 2.92 ${\mu}g/m^3$, 70.34 ${\mu}g/m^3$, 14.00${\mu}g/m^3$ and 31.43 ${\mu}g/m^3$, respectively, which exceeded the exposure limites. Each arena exceeded the exposure limit for one pollutant each. However, styrene didn't exceed the limit as 8.09 ${\mu}g/m^3$. Furthermore, the geometric mean of formaldehyde was 63.11${\mu}g/m^3$ and 7 arenas exceeded the limit. The geometric mean of volatile organic compounds(VOCs) was 428.41${\mu}g/m^3$ and 10 arenas exceeded the limit. For the density distribution of pollutants by location, benzene, toluene, ethylbenzene, xylene, styrene and formaldehyde showed higher density distribution in underground spaces, for which the statistically significant difference was not found. However, PM10 showed the statistically significant difference (p<0.05). In accordance with the analysis on the correlation between the density of pollutants in the screen golf arenas, Pearson correlation coefficient between ethylbenzene and styrene was 0.980, very significant correlation(p<0.01). The correlation coefficients between the density of toluene, ethylbenzene, xylene and styrene and that of VOCs were 0.543, 0.434, 0.451 and 0.459, respectively, which demonstrated the statistically significant difference (p<0.05).

Source Emission Rate on Air Pollutants from Portable Gas Range and Optimal Ventilation Rate in Indoor Environment (휴대용 가스렌지 연소에 의한 공기오염물질의 발생량 및 실내환경의 필요 환기량)

  • Yim, Sung-Kuk;Kim, Young-Hee;Yang, Won-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.2 s.95
    • /
    • pp.92-97
    • /
    • 2007
  • A series of source tests were conducted to characterize emissions of nitrogen oxide(NOx, NO, $NO_2$), carbon mon oxide(CO), carbon dioxide$(CO_2)$ and total VOCs from portable combustion devices in steady-state using well-mixed chamber. Since use of portable gas range is widespread in houses and restaurants in Korea, it is important to characterize the emission of air pollutants and suggest optimum ventilation rate. Ranges of emission rates of air pollutants from portable gas ranges were $NO \;0.551\sim0.939mg/hr,\;NO_2\;0.354\sim1.080mg/hr,\;NO_x\;1.207\sim1.631mg/hr,\;CO\;1.389\sim4.21mg/hr,\;CO_2\;2426.823\sim2973.495mg/hr$, and VOCs $0\sim0.119mg/h$. Mean of personal exposure and indoor environment level of $NO_2$ by combustion of portable gas range were 74.7 ppb and 65.4 ppb, respectively, suggesting persons using portable gas range in houses and restaurants might be highly exposed. Required ventilation rate to control the air pollutants emitted from portable gas range was maximumly $3.131m^3/hr$ on the basis of $NO_2$ indoor air quality standard.

Temporal Characteristics of Volatile Organic Compounds in Newly-Constructed Residential Buildings: Concentration and Source

  • Shin, Seung-Ho;Jo, Wan-Kuen
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.169-176
    • /
    • 2013
  • The present study was designed to examine the concentrations, emission rates, and source characteristics of a variety of volatile organic compounds (VOCs) in 30 newly-constructed apartment buildings by measuring indoor and outdoor VOC concentrations over a 2-year period. For comparison, seven villa-type houses were also surveyed for indoor and outdoor VOC concentrations over a 3-month period. Indoor and outdoor air samples were collected on Tenax-TA adsorbent and analyzed using a gas chromatograph (GC)/mass spectrometer system or a GC/flame ionization detector system coupled to a thermal desorption system. The long-term change in indoor VOC concentrations depended on the type of VOCs. Generally, aromatic (except for naphthalene), aliphatic, and terpene compounds exhibited a gradual deceasing trend over the 2-year follow-up period. However, the indoor concentrations of the six halogenated VOCs did not significantly vary with time changes. Similar to these halogenated VOCs, the indoor naphthalene concentrations did not vary significantly with time changes over the 2-year period. Unlike the halogenated VOCs, the indoor naphthalene concentrations were much higher than the outdoor concentrations. The indoor concentrations of aliphatic and aromatic compounds were higher for the villa-type houses when compared to those of apartment buildings. In addition, four source groups (floor coverings and interior painting, household products, wood paneling and furniture, moth repellents) and three source groups (floor coverings and interior painting, household products, and moth repellents) were considered as potential VOC sources inside apartment buildings for the first- and second-year post-occupancy stages, respectively.

Exposure Assessment of Solvents and Toluene Diisocyanates among Polyurethane Waterproofing Workers in the Construction industry (건설현장 우레탄 방수작업자의 휘발성 유기화합물 및 톨루엔 디이소시아네이트 노출평가)

  • Park, Hyunhee;Hwang, Eunsong;Ro, Jiwon;Jang, Kwangmyung;Park, Seunghyun;Yoon, Chungsik
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.2
    • /
    • pp.134-152
    • /
    • 2020
  • Objectives: The objective of this study was to evaluate volatile organic compounds (VOCs) and toluene diisocyanates (TDIs) exposure among polyurethane waterproofing workers in the construction industry. Methods: Task-based personal air samplings were carried out at seven construction sites using organic vapor monitor for VOCs (n=88) and glass fiber filters coated with 1-(2-pyridyl)piperazine(1-2PP) for TDIs (n=81). The concentration of VOCs and TDIs were shown for four different work types(mixing paint, primer roller painting, urethane resin spread painting, painter assistant) at five different worksites (rooftop, ground parking lot, piloti, bathroom, and swimming pool). The two TDI sampling methods (filter vs impinger) were evaluated in parallel to compare the concentrations. Results: The geometric mean(GM) concentration of VOCs Exposure Index (EI) was highest for primer roller painting (1.4), followed in order by, urethane resin spread painting (0.85), mixing paint (0.53), and painter assistant (0.35) by work types. The GM of VOCs EI was highest for bathroom (1.4) followed in order by, swimming pool (0.85), piloti (0.89), ground parking lot (0.82) and rooftop (0.57) by worksites. The GM of 2,4-/2,6-TDI concentration was 0.052 ppb and 0.432 ppb each. There was no statistical difference in TDIs concentrations among worksites. The concentration of 2,6-TDI was ten times higher than that of 2,4-TDI. The concentration of 2,6-TDI by impinger method was 5.7 times higher than that by filter method. Conclusions: In this study, we found 38.6% of the VOCs samples exceeded the occupational exposure limits and 19.8% of the 2,6-TDI samples exceeded 1 ppb among polyurethane waterproofing workers. The most important determinants that increase the concentration of VOCs and TDIs was indoor environment and primer painting work.