• Title/Summary/Keyword: VOCs in air

Search Result 598, Processing Time 0.03 seconds

Degradation of Volatile Organic Compound Mixtures Using a Biofiltration System (생물여과 시스템을 이용한 다성분계 휘발성 유기화합물의 분해)

  • 윤인길;박창호
    • KSBB Journal
    • /
    • v.15 no.5
    • /
    • pp.501-506
    • /
    • 2000
  • A bench-scale air biofilter was evaluated for the removal of volatile organic compounds (VOCs) from a gas stream. Compost and peat were used as the biological attachment media. Biofilter operating parameters such as incoming VOCs concentrations, temperature, and packing materials were examined. After 26 days of acclimation periods, at 25$^{\circ}C$ and 45$^{\circ}C$, the biofilter removed more than 90% of 30 to 72 mg/㎥ of total VOC. After 40 days of operation, the concentrations of isoprene, toluene, and m-xylene were reduced to 96∼99, 91∼93, and 91∼93% of the original concentrations. VOC removal efficiency was not affected by the temperature. The medium pH was maintained near neutral (pH 6.5∼7.1). After 37 days of operation, the total bacteria count in the biofilter media increased to 1.12${\times}$10(sup)8 cells/g of medium.

  • PDF

A Study on Examples Applicable to Numerical Land Cover Map Data for Atmospheric Environment Fields in the Metropolitan Area of Seoul - Real Time Calculation of Biogenic CO2 Flux and VOC Emission Due to a Geographical Distribution of Vegetable and Analysis on Sensitivity of Air Temperature and Wind Field within MM5 - (수도권지역에서 수치 토지피복지도 작성을 통한 대기환경부문 활용사례 연구 - MM5내 기온 및 바람장의 민감도 분석과 식생분포에 기인한 VOC 배출량 및 CO2 플럭스의 실시간 산정을 중심으로 -)

  • Moon, Yun-Seob;Koo, Youn-Seo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.5
    • /
    • pp.661-678
    • /
    • 2006
  • Products developed in this research is a software which can transfer the type of shape(.shp) into the type of ascii using the land cover data and the topography data in the metropolitan area of Seoul. In addition, it can calculate the $CO_2$ flux according to distribution of plants within the land cover data. The $CO_2$ flux is calculated by the experimental equation which is compose of the meteorological parameters such as the solar radiation and the air temperature. The net flux was shown in about $-19ton/km^2$ by removing $CO_2$ through the photosynthesis during daytime, and in 2 ton/km2 by producing it through the respiration during nighttime on 10 August 2004, the maximum day of air temperature during the period of 3yr(2001 to 2004), in the metropolitan area of Seoul. Spatial distribution of the air temperature and the wind field is simulated by substituting the middle classification of the land cover map data, upgraded by the Korean Ministry of Environment(KME), for the land-use data of the United States Geological Survey(USGS) within the Meteorological Mesoscale Model Version 5(MM5) on 10 August 2006 in the metropolitan area of Seoul. Difference of the air temperature between both data was shown in the maximum range of $-2^{\circ}C\;to\;2.9^{\circ}C$, and the air temperature due to the land use data of KME was higher than that of USGS in average $0.4^{\circ}C$. Also, those of wind vectors were meanly lower than that of USGS in daytime and nighttime. Furthermore, the hourly time series of Volatile Organic Components(VOCs) is calculated by using the Biosphere Emission and Interaction System Version 2(BEIS2) including the new land cover data and the meteorological parameters such as the air temperature and so]ar insolation. It is possible to calculate the concentration of ozone due to the biogenic emission of VOCs.

VOCs Emission Characteristics of Coating Materials for Wood Finishing (목재용 마감도료의 휘발성유기화합물 방출특성)

  • Park, Sang-Bum;Lee, Min;Lee, Sang-Min;Kang, Yeong-Seok
    • Journal of the Korea Furniture Society
    • /
    • v.26 no.1
    • /
    • pp.22-30
    • /
    • 2015
  • In order to prevent decay, distortion, bending, twist on wood products such as wooden furnitures, variety of coating materials were developed and used so far. The coating materials for wood finishing can be synthesized by natural resource or petroleum. However, these coating materials can cause contamination of indoor air quality due to emission of volatile organic compounds (VOCs). In this study, commercialized coating materials for wood finishing such as varnish, coat, and stain were evaluated on emission characteristics of VOCs. Among the varnish, eco-friendly products had about 15~46% lower TVOC emission ($1,042{\mu}g/m^2h{\sim}3,257{\mu}g/m^2h$, respectively, than typical product ($7,100{\mu}g/m^2h$). Natural resource based coating material showed lowest TVOC emission level. However, one of natural resource based waterborne stain showed higher TVOC emission level because waterborne stain already contained higher amount of natural VOC. Oil-based stain might not be suitable for indoor use on interior wall and furniture due to exceed amount of TVOC. Based on results, natural resource based coat or waterborne stain are recommenced to use on wood products.

Separation of VOCs from Air through Composite Membranes Prepared by Plasma Polymerization of Hexamethyldisiioxane (Hexamethyldisiioxane의 플라즈마 중합에 의하여 제조된 복합막을 통한 공기중의 휘발성 유기물질의 분리에 관한 연구)

  • 류동현;오세중;손우익;구자경
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1998.10a
    • /
    • pp.63-65
    • /
    • 1998
  • 1. Introduction : Atmospheric discharge of VOC-contaminated streams in chemical plants and air streams from chemical processes poses a serious environmental problem and entails large financial losses. Such emissions may be reduced by i) adsorption process, ii) absorption process and iii) incineration process. These processes only forbids the air pollutions. Throughout the recent decade, another technique-membrane process has emerged. The separation and recovery of organic vapors by membrane process may have great economic potential. Most of the published research works on the separation of organic vapors from air were performed using silicon rubber membranes. However, it is very difficult to fabricate very thin membranes with less than 1 $u m thickness. Plasma polymerization could be a good technique to generate a thin polymer film. The objective of this work is to find out the optimum condition of plasma polymerization for producing VOC separation membrane. For the objective, composite membranes are prepared through plasma polymerization of hexamethyldisiloxane onto porous substrates under different conditions. The membrane is then subjected to the permeation of permanent gases and VOCs to find the correlations between the physical properties of the penetrant and permeability and selectivity.

  • PDF

Concentrations of $C_2$~$C_9$ Volatile Organic Compounds in Ambient Air in Seoul (서울 대기 중에서 $C_2$~$C_9$ 휘발성 유기화합물의 농도)

  • Na, Gwang-Sam;Kim, Yong-Pyo;Kim, Yeong-Seong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.14 no.2
    • /
    • pp.95-106
    • /
    • 1998
  • Volatile organic compounds (VOCs) from Ca to C9 were investigated with nine ambient air samples collected in April 26, August 17, 1996 and January 23, 1997 in a Seoul site. On each sampling day, three 2-hr integrated canister samples were collected in early morning, early afternoon and late afternoon, respectively to study temporal . variation of VOCs. Most of VOC species showed diurnal variation with higher concentrations in the early morning and lower concentrations in the afternoon. The concentrations of light alkanes were high, probably due to the emission from liquefied petroleum gas (LPG) and evaporation of gasoline. Especially, the concentration of propane was the highest in the morning samples. The concentrations of propane, ethylene, acetylene, and toluene were prominent in their hydrocarbon groups, respectively. These components were the main source of car exhaust, gasoline evaporization, LPG, or solvent usage.

  • PDF

Characteristics of VOCs Oxidation using Copper Phthalocyanine Catalysts (구리 프탈로시아닌 촉매의 VOCs 산화 특성)

  • 서성규;윤형선
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.4
    • /
    • pp.515-521
    • /
    • 2004
  • The catalytic oxidation of volatile organic compounds (methanol. acetaldehyde) has been characterized using the copper phthalocyanine catalyst in a fixed bed flow reactor under atmospheric pressure. The catalytic activity for pretreatment conditions was examined by this reaction system. The catalytic activity was ordered as follows: metal free-PC<Cu ($\alpha$)-PC<Cu ($\beta$)-PC The formaldehyde, carbon monoxide as a partial oxidation product of methanol and acetaldehyde over Cu ($\alpha$)-PC catalyst were detected and the conversions of methanol and acetaldehyde were accomplished above 95% over Cu ($\alpha$) -PC, Cu ($\beta$) - PC catalyst at 35$0^{\circ}C$. The pretreated metal free -PC, Cu($\alpha$)-PC, Cu($\beta$)-PC catalysts have been characterised by TGA, EA and XRD analysis. The catalytic activity pretreated with air and $CH_3$OH mixture (P-4) or air only (P-5) was very excellent. XRD and EA results showed that Cu($\alpha$)-PC, Cu($\beta$)-PC were destroyed an(1 new metal oxide such as CuO were formed.

Flux of Volatile Organic Compounds from Wastewater Treatment Plant (하수처리장에서 휘발성유기화합물의 FLUX)

  • Kim, Jong O;Chang, Daniel P.Y.;Lee, Woo Bum
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.91-101
    • /
    • 2000
  • The emission sources of volatile organic compounds (VOCs) are wastewater treatment plants. sanitary landfills, automobile industries, and so on. The VOCs are harmful to human beings because of their toxicity and carcinogenicity, and cause the serious air pollution problem producing ozone ($O_3$) as a result of photochemical reaction. To investigate the emission of VOCs from wastewater treatment plant, aeration basins at the City of Los Angeles' Hyperion Treatment Plant were selected and measured flux was compared with calculated flux. For compounds commonly associated with wastewater (DCM, TCM, PCE, UM, DCB, UND) and not expected in vehicle exhaust or ambient air coming off the ocean, concentrations immediately downwind of the aeration basins were a factor of ten or higher than those measured in the upwind air. The airborne flux of less degradable or non-biodegradable compounds, e.g., DCE, DCM, TCA, DCA, TCM, PCE, DCB, through an imaginary plane at the downwind side of the aeration basins was in agreement with the estimated flux from measured liquid phase concentrations. Henry's constant. aeration rate, and an assumption of bubble saturation. For several compounds (PCE, DCE, TCA), the ratio (measured flux/calculated flux) is almost unity.

  • PDF

A prediction of indoor pollutant concentration using method mass transfer coefficient in multi-layered building materials (복합 건축자재의 물질전달계수를 이용한 실내 오염물질 농도 예측방법)

  • Kim, Chang Nam;Lee, Yun Gyu;Leigh, Seung Bok;Kim, Tae Yeon
    • KIEAE Journal
    • /
    • v.7 no.5
    • /
    • pp.53-58
    • /
    • 2007
  • In order to predict the indoor air pollutant, the VOCs emission rate is used through small chamber in the design process. However, the small chamber method has limitations as the convective mass transfer coefficient, the most important factor when predicting VOCs contamination of indoor air, is different between the small chamber result and the measured data in the actual building. Furthermore, the existing studies which analyzed mass transfer coefficient in the small chamber were directed on the small chambers developed at the time and FLEC(Field and Laboratory Emission Cell), thus, are different from the current small chamber which has been changed with improvements. The purpose of this study is to determine the emission rate of pollutant in multi-layered building materials, and predict the indoor pollutant concentration through the CFD(Computational of Fluid Dynamics) and CRIAQ2 based on the mass transfer coefficient on singled-layered building material by using the current small chamber widely used in Korea. Futhermore, this study used the new convective mass transfer coefficient(hm') which indicates the existing convective mass transfer coefficient(hm) including VOC partition coefficient(k). Also, formaldehyde was selected as target pollutant.

A Prediction of Pollutant Emission Rate using Numerical Analysis and CFD in Double-Layered Building Materials (수치해석 및 CFD를 이용한 소형챔버내 복합건축자재의 오염물질 방출량 예측)

  • Kim, Chang-Nam;Leigh, Seung-Bok;Kim, Tae-Yeon
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.277-282
    • /
    • 2006
  • In order to predict the indoor air pollutant, the VOCs emission rate is used through small chamber in the design process. However, the small chamber method has limitations as the convective mass transfer coefficient, the most important factor when predicting VOCs contamination of indoor air, is different between the small chamber result and the measured data in the actual building. Furthermore, the existing studies which analyzed mass transfer coefficient in the small chamber were directed on the small chambers developed at the time and FLEC(Field and Laboratory Emission Cell), thus, are different from the current small chamber which has been changed with improvements. The purpose of this study is to determine the emission rate of pollutant in double-layered building materials through the CFD(Computational of Fluid Dynamics) and Numerical analysis based on the mass transfer coefficient on singled-layered building material by using the current small chamber widely used in Korea. Futhermore, this study used the new convective mass transfer coefficient($h_m'$) which indicates the existing convective mass transfer coefficient($h_m$) including VOC partition coefficient(k). Also, formaldehyde was selected as target pollutant.

  • PDF

Exposure to PAHs and VOCs in Residents near the Shinpyeong·Jangrim Industrial Complex (신평·장림 산단 인근 주민의 PAHs 및 VOCs 노출)

  • Yoon, Mi-Ra;Jo, HyeJeong;Kim, GeunBae;Chang, JunYoung;Lee, Chul-Woo;Lee, Bo-Eun
    • Journal of Environmental Health Sciences
    • /
    • v.47 no.2
    • /
    • pp.131-143
    • /
    • 2021
  • Objectives: This study aims to investigate the atmospheric concentration of polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) and the urinary concentration of biomarkers in residents near the Shinpyeong·Jangrim Industrial Complex to compare them with those of residents in a control area. Methods: Hazardous air pollutants (PAHs and VOCs) were measured in an exposure area (two sites) and a control area (one site). Urine samples were collected from residents near the industrial complex (184 persons) and residents in the control area (181 persons). Multiple linear regression analysis was used to identify which factors affected the concentration of PAHs and VOCs metabolites. Results: The average atmospheric concentration of PAHs in Shinpyeong-dong and Jangrim-dong was 0.45 and 0.59 ppb for pyrene, 0.15 and 0.16 ppb for benzo[a]pyrene, and 0.29 and 0.35 ppb for dibenz[a,h]anthracene. The average atmospheric concentration of VOCs was 1.10 and 0.99 ppb for benzene, 8.22 and 11.30 ppb for toluene, and 1.91 and 3.05 ppb for ethylbenzene, respectively. The concentrations of PAHs and VOCs in residents near the Shinpyeong·Jangrim Industrial Complex were higher than those of residents in the control area. Geometric means of urinary 2-hydroxyfluorene, 1-hydroxypyrene, methylhippuric acid, and mandelic acid concentrations were 0.45, 0.22, 391.51, and 201.36 ㎍/g creatinine, respectively. Those levels were all significantly higher than those in the control area (p<0.05). In addition, as a result of multiple regression analysis, even after adjusting for potential confounding factors such as gender and smoking, the concentration of metabolites in urine was high in residents near the Shinpyeong·Jangrim Industrial Complex. Conclusion: The results of this study show the possibility of human exposure to VOCs in residents near the Shinpyeong·Jangrim Industrial Complex. Therefore, continuous monitoring of the local community is required for the management of environmental pollutant emissions.