• Title/Summary/Keyword: VOCs in air

Search Result 598, Processing Time 0.032 seconds

VOCs(Volatile Organic Compounds) sensor using SnO2 nanowires (산화주석 나노선을 이용한 VOCs 센서)

  • Hwang, In-Sung;Kim, Sun-Jung;Kim, Yoon-Sung;Ju, Byeong-Kwon;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.69-74
    • /
    • 2008
  • VOCs (Volatile Organic Compound) sensors were fabricated using $SnO_2$nanowires-based thin films and its gas sensing behaviors were studied. The $SnO_2$ nanowires synthesized from a thermal evaporation process were dispersed in a solution and the sensor film was prepared by dropping the slurry on the substrate with the electrodes and an embedded heater. The gas response (Ra/Rg, Ra: resistance in air, Rg: resistance in gas) to $30{\sim}40$ ppm Benzene, Ethyl Benzene, o-xylene were in the range of $39{\sim}42$, which were significantly higher than those to 50 ppm of CO, $CH_4$ and $C_3H_8$ ($12{\sim}19$).

Synthesis and comparison of pure TiO2 and metal/non-metal doped TiO2 as a photocatalyst

  • Moon, Jiyeon;Lee, Kyusang;Kim, Seonmin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.370.1-370.1
    • /
    • 2016
  • Volatile organic compounds (VOCs) are considered hazardous air pollutants and these are emitted from building materials and household products. VOCs can cause global warming as well as human sickness, and even cancer. Photocatalysis provides a way of converting VOCs into harmless materials. Various researches have shown that $TiO_2$ is the most efficient photocatalysts due to its excellent activity. In this study, metal/non-metal doped $TiO_2$ particles are synthesized for the enhancement of the photocatalytic properties of pure $TiO_2$. By metal/non-metal doping, band gap energies of prepared samples were analyzed by UV/Visible spectrophotometer. The physical and chemical properties of synthesized powder were characterized by field emission scanning electron microscope, by BET for measuring their specific surface area, and by XRD for phase identification and particle size determination. Degradation ability for p-xylene was evaluated through monitoring the concentration in a closed chamber. Relation between their properties and decomposition abilities for VOC were evaluated based on the experimental results.

  • PDF

A Study on the Comparison of Atmospheric Concentrations of Volatile Organic Compounds in a Large Urban Area and a Sub-Urban Area (대도시 및 주변 교외지역의 대기 중 휘발성 유기화합물 농도 비교에 관한 연구)

  • Park, Ji-Hyae;Seo, Young-Kyo;Baek, Sung-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.6
    • /
    • pp.767-778
    • /
    • 2006
  • This study was carried out to evaluate the temporal variations of VOCs at an urban site, and to compare the concentrations of VOCs at an urban site in Daegu with those at a suburban site in Gyeongsan. Three hourly VOC samples in the ambient air were collected using a sequential tube sampler (STS 25, Perkin Elmer) throughout two weeks during May and July representing spring and summer seasons, respectively. The VOC concentrations were determined by an automatic thermal desorption apparatus with GC/MS analysis. A total of 12 VOCs of environmental concern were determined, which are chloroform, benzene, trichloroethylene, toluene, tetra-chloroethylene, ethylbenzene, m+p-xylenes, o-xylene, styrene, 1,3,5- and 1,2,4-trimethylbenzenes. Among 12 target VOCs, the most abundant compound appeared to be toluene, being followed by xylenes. The mean concentrations at the urbn site were 1.2 pub for benzene and 20.4 ppb for toluene (n=221) while the mean levels at the suburban site were 0.9 ppb and 4.3 ppb for benzene and toluene (n=96), respectively. The urban site concentrations were typically several-fold higher than those measured at the suburban site. It was found that general trends of VOC levels were significantly dependent on traffic conditions at the sampling site since VOC concentrations were at their maximum during rush hours, i.e. $9{\sim}12a.m$ and $6{\sim}9p.m$. Statistical investigations were conducted to investigate any significant relationships between VOC concentrations and affecting factors. Calculated correlation coefficients among VOCs were positively significant at a level of 0.05 in most cases. Increased concentrations of toluene in the urban site were estimated to reflect the effect of large industrial sources, mainly from textile industry.

Occurrence and distribution of indoor volatile organic compounds in residential spaces by sampling methods (시료채취 방식에 따른 주거 공간 내 휘발성유기화합물 발생 특성 평가)

  • Lee, Suyeon;Kim, Daekeun
    • Journal of odor and indoor environment
    • /
    • v.17 no.4
    • /
    • pp.362-371
    • /
    • 2018
  • Indoor Volatile organic compounds (VOCs) are classified as known or possible toxicants and odorants. This study characterized VOC levels in 11 homes in an area in the capital of Seoul by using two different methods of VOCs sampling, which are the active sampling using a thermal sorption tube and the passive sampling using a diffusion sampler. When using the active sampling method, the total target VOC concentration ranged from 41.7 to $420.7{\mu}g/m^3$ (mean $230.4{\mu}g/m^3$ ; median $221.8{\mu}g/m^3$) during winter and 21.3 to $1,431.9{\mu}g/m^3$ (mean $340.1{\mu}g/m^3$; median $175.4{\mu}g/m^3$) during summer. When using the passive method, 29.6 to $257.5{\mu}g/m^3$ (mean $81.8{\mu}g/m^3$; median $49.4{\mu}g/m^3$) during winter and 1.2 to $5,131.1{\mu}g/m^3$ (mean $1,758.8{\mu}g/m^3$; median $1,375.1{\mu}g/m^3$) during summer. Forty-nine VOCs were quantified and toluene showed the highest concentration regardless of the season and the sampling method studied. The distribution of VOCs was relatively varied by using the active method. However, it showed a low correlation with indoor environmental factors such as room temperature, humidity and ventilation time. The correlation between indoor environmental factors and VOCs were relatively high in the passive method. In particular, these characteristics were confirmed by principal component analysis.

Health Risk Assessment by Potential Exposure of NO2 and VOCs in Apartments (공동주택내 이산화질소(NO2) 및 휘발성유기화합물(VOCs) 노출에 따른 건강 위해성 평가)

  • Jung, Soon-Won;Yang, Won-Ho;Son, Bu-Soon
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.4
    • /
    • pp.242-249
    • /
    • 2007
  • Indoor air quality has become a topic of interest and concern. Especially changes in construction design and the increased use of synthetic products may result in an increasing of complaints and health effects about the quality of indoor air at home. In this study, nitrogen dioxide($NO_2$) and volatile organic compounds(VOCs) within new and established apartments on the basis of 4 years of building year were measured every 3 days consecutively during 60 days. We selected each 10 house in Seoul, Asan and Daegu, respectively, and produced risk numbers for hazard quotients, and predicted increases in incidence of cancer. The calculations were made for the adult with default exposure values and also made for a worst case scenario using Monte-Carlo simulation as describing the reasonable exposure(RME). Mean of Monte carlo analysis by benzene, in the construction under 4 years (male: $9.2{\times}10^{-5}$, female: $1.0{\times}10^{-4}$) and over 4 years (male: $6.8{\times}10^{-5}$, female: $8.3{\times}10^{-5}$) exceeded $10^{-6}$ of permitted standards in US EPA, RME of Monte carlo analysis. In construction under 4 yews (male: $9.9{\times}10^{-3}$, female: $9.6{\times}10^{-3}$) and over 4 years (male: $9.8{\times}10^{-3}$, female: $7.8{\times}10^{-3}$) exceeded $10^{-4}$ of maximum permitted standards in US EPA. The hazard index of non-carcinogenic pollutants by nitrogen dioxide, toluene, m,p-xylene and o-xylene, both male and female in apartment constructed under 4 yews and over 4 years was found less than the permitted standards of hazardous health effects in CTE. Significant cancer risks and non-cancer hazard quotients were predicted in under 4 yews of building year.

VOCs impact factor analysis of unit components in Part assembly by ISO 12219-5 method (ISO 12219-5 (Static chamber법)를 이용한 모듈내 구성부품별 VOCs 영향도 분석)

  • Lee, Shinjong;Jang, Heyjin;Gwak, Donghwan;Kim, Man-Goo
    • Analytical Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.284-291
    • /
    • 2014
  • The handling process of car indoor air quality is composed of 2 steps of testing. First, assambly part is tested to find a source of car indoor VOCs. Second, cut sample of unit component is tested to find a source material of VOCs emission. If the source material of VOCs emission is found, it can reduce car and assembly part of VOCs by improving material. As cut sample testing has problem of emission from cut surface to find the source of VOCs, it needs to apply unit components testing method. The aim of study is to evaluate VOCs impact factor of unit components in assembly parts. ISO 12219-5 test method reflects not only material effect but also surface area effect by testing unit component without cutting. The unit components of doortrim and console, were tested by ISO12219-5. And it could figure what unit component is main source of VOCs in assembly. And quantity conversion Factor which gets by testing assembly and unit components can be used to make guideline of ISO 12219-5.

Potential Exposure to RSP, $NO_2$ and VOCs for Taxi Professional Driver

  • Kim, Dae-Won;Lee, Jung-Eun;Son, Bu-Soon;Kim, Young-Hee;Yang, Won-Ho
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2005.06a
    • /
    • pp.299-302
    • /
    • 2005
  • Vehicle occupant exposure to air pollutants has been a subject of concern in recent years because of higher levels of air pollutants inside gasoline or diesel-using vehicle, comparing to the surrounding atmosphere. This study evaluated the potential exposure to respirable suspended particulate (RSP), nitrogen dioxide ($NO_2$) and volatile organic compounds (VOCs), comparing weekday (Monday and Thursday) and weekend (Saturday). Indoor mean concentrations of RSP inside vehicle were 51.2 $ug/m^3$ and 75.52 $ug/m^3$ in weekday and weekend, respectively. Measured indoor NO$_2$ concentrations were 14,8 ppb and 20.8 ppb, respectively. Benzene and toluene mean concentrations inside vehicle were 5.4${\pm}$2.4 ppb and 23.8${\pm}$33.8 ppb, respectively.

  • PDF

Properties of Water-Based According to Particle Size of Granular Activated Clay (입상형 활성백토의 입자크기에 따른 수성도료의 특성)

  • Choi, Byung-Cheol;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.19-20
    • /
    • 2021
  • In order to reduce the emission of harmful substances that degrade indoor air quality, the Ministry of Environment strengthened the standards for the content of VOCs in paints to supply and sell eco-friendly paints. In this related study, an eco-friendly paint mixed with a powder-type absorbent material was prepared and its characteristics were reviewed. As the amount of powder-type absorbent material increased, the workability (viscosity, peeling, etc) decreased. Accordingly, this study aims to examine which particle size is suitable according to the particle size of the granular adsorbent while improving the problem of the powdery adsorbent by using the granular adsorbent. As an experimental plan, the particle size of granular activated clay is selected to be 0.250, 0.425, 0.710(mm), and the decrease rate of VOCs concentration and impact resistance are reviewed. As a result of the experiment, as the particle size of the granular activated clay increased, the decrease rate of the VOCs concentration increased and the impact resistance improved. Therefore, considering the problems that occur after actual painting, the particle size of granular activated clay of 0.425mm is suitable.

  • PDF

A Study on the Reduction of Volatile Organic Compounds by Fatsia japonica and Ardisia pusilla (팔손이와 산호수에 의한 휘발성유기화합물 저감효과에 관한 연구)

  • Song, Jeong Eun
    • KIEAE Journal
    • /
    • v.12 no.4
    • /
    • pp.77-82
    • /
    • 2012
  • This study conducted the experiment of reduction of Volatile Organic Compounds(VOCs) and Formaldehyde concentration by Native plants, Fatsia japonica and Ardisia pusilla. The two plants are advantageous in that they are highly available as they grow wild, and being easy to get. Fatsia japonica is a plant of its wide and large leaf diverged 7 or 8 parts, which is thought to have a high effect of air purification. Ardisia pusilla has a smaller leaf than Fatsia japonica, which is characterized by more leaves and beautiful. Field measurements were performed using Fatsia japonica and Ardisia pusilla which were verified as air-purifying plants in Korea. The effect of reducing the concentration of VOCs and Formaldehyde by plant studied in a full scale mock-up model. The dimensions of the two models were equal. The concentration of Benzene, Toluene, Ethylbenzene, Xylene, Stylene, Formaldehyde were monitored, since they were known as most toxic materials. The concentration of VOCs was monitored three hours after the plants were placed and three days after the plants were placed. Field measurements were performed in models where the plants were placed and were not. As a result, they had all an effect of reducing pollution. In all cases of experiment of planting and growing volume, the more planting volume, the more excellent the effect. Toluene was more effective in Fatsia japonica and Ardisia pusilla planted, Formaldehyde was more effective in Fatsia japonica planted respectively. In planting and growing and placing experiment, the placement at sunny spot was more effective than that at scattered growing. When Fatsia japonica was placed at sunny spot, the reduction effect of Formaldehyde was the most excellent, and when Ardisia pusilla was placed at sunny spot, the reduction effect of Toluene was the most effective.

Biotreatment Technologies for Air Pollution Control (생물학적 처리기술을 이용한 대기오염 제어)

  • Won, Yang-Soo
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.1-15
    • /
    • 2007
  • Biological treatment is a relatively recent air pollution control technology in which off-gases containing biodegradable odors and volatile organic compounds(VOCs) are vented through microbes. It is a promising alternative to conventional air pollution control methods. Bioreactors for air pollution control have found most of their success in the treatment of dilute and high flow waste air streams containing VOCs and odor compounds. They offer several advantages over traditional technologies such as incineration or adsorption. These include lower treatment costs, absence of formation of secondary pollutants, no spent chemicals, low energy demand and low temperature treatment. The three most widely used technologies are described, namely biofiltration, biotrickling filtration, bioscrubbing. The most widely used bioreactor for air pollution control is biofilter, but it has several limitations. In the past years major progress has been accomplished in the development of vapor phase bioreaction systems, for solving problems of biofilter. Biotrickling filters are more complex than biofilters, but are usually more effective, especially for the treatment of compounds which are difficult to degrade or compounds that generate acidic by-products. This, paper reviews fundamental and theoretical/practical aspect of air pollution control in biofilter, biotrickling filter and bioscrubber, focusing more extensively on biotrickling filtration. Special emphasis is given to the operating parameters and the factors influencing performance for air pollution control, and cost estimation in biotreatment technologies.

  • PDF