• Title/Summary/Keyword: VOCs control technology

Search Result 44, Processing Time 0.018 seconds

Implementation of an Artificial Odour Recognition System with Unsupervised Clustering Methods (Unsupervised clustering 방법을 갖는 인공 냄새인식 시스템의 구현)

  • Choi, Chan-Seok;Kim, Jeong-Do;Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.310-316
    • /
    • 2001
  • We have been designed and constructed an artificial odour recognition system(electronic nose system) using metal oxide type sensor array for recognizing and analyzing various odours. We proposed an unsupervised clustering method based on Euclidean distances in order for human observer to examine easily multi-dimensional data, which has been measured from an array of sensors. This is a combination of Principal Components Analysis(PCA) used as a starting point for Sammom Mapping Method(SMM). No prior assumptions are made of the classes in which odour belong, and the error due to dimensional reduction at the PCA can be minimized without the disadvantages of rotation of clusters when the order of data sets in a data base was changed in the SMM. An artificial odour recognition system with the proposed unsupervised clustering method was applied to assessment of odour differences of Volatile Organic Compounds(VOCs) and Korean whiskies respectively, and demonstrated the best performances throughout the experimental trails.

  • PDF

Adsorption characteristics of the sericite and diatomite for ammonia gas (견운모와 규조토에 대한 암모니아 기체의 흡착특성)

  • Lee, Suseung;Kim, Jinsoo;Yun, Chang Yeon;Yi, Jongheop
    • Clean Technology
    • /
    • v.12 no.3
    • /
    • pp.175-181
    • /
    • 2006
  • The feasibility of the use of porous fossil diatoms for indoor air pollution control was investigated via the characterization of physical and chemical properties. The fossil diatoms were observed by SEM(Scanning Electron Microscope). Diatomite had well-distributed pores below 5 nm and relatively large surface area compare to sericite. However, no porosity in sericite was found. Results showed that diatomite had better performance than sericite in respect to porosity and large surface area. But diatomite which is thermally treated at $950^{\circ}C$ has no porosity and low surface area because of combustion of fossil diatoms or calcination of inorganic oxide at high temperature, and has poor adsorption capability of ammonia gas. In conclusion, porous diatomite has relatively high performance to adsorb noxious chemical compounds, such as ammonia gas and VOCs.

  • PDF

Impact of Indoor Plants on Indoor Air Quality and Occupational Health in Newly Built Public Building Offices - Focusing on Allergic Conjunctivitis and Stress-related Symptom Questionnaires - (신축건물 사무실내 식물 적용의 실내 공기질 및 재실자 건강영향 평가 - 알레르기 비결막염 및 스트레스 관련 증상설문을 중심으로 -)

  • Lee, Yong Won;Lim, Young Wook;Kim, Kwang-Jin;Kim, Ho-Hyun
    • Journal of Environmental Health Sciences
    • /
    • v.43 no.4
    • /
    • pp.334-348
    • /
    • 2017
  • Objectives: We investigated the impacts of indoor plants on indoor air quality and occupational health, focusing on allergic rhinconjunctivitis and stress among employees in new office buildings. Methods: A total of 34 employees working at new public office buildings were enrolled as subjects (n=17, with indoor plants) and as a control (n=17) group. Before and after introducing indoor plants for three months, indoor air quality measurements including VOCs and aldehydes and questionnaires on sick building syndrome, AR symptoms (ARIA based), stress (DASS 42, KOSS, and SACL), and indoor characteristics were performed and statistically analysed. Results: Among the 34 enrolled subjects, 19 were included in the probable AR subject group (subjects with indoor plants, n=8, control n=11) and completed all questionnaires. Statistical analyses were done for total, AR subject groups, and controls. As a result, it was confirmed that major indoor air pollutants decreased after the introduction of indoor plants (p<0.5). Among major symptoms of allergic rhinoconjunctivitis, watery rhinorrhea, nasal stuffiness, and nasal itching indexes decreased (p<0.5, respectively). A decrease was noted in some areas of work-related stress indexes (mainly KOSS) among the subject group (total and AR) and a decrease of indoor environmental attractiveness among the control group (total and AR) (p<0.5, for all). Conclusions: Indoor plants may help reduce indoor air pollutants and decrease AR symptoms and work-related stress of employees in newly built office buildings. Various further follow-up studies on the mechanism of environmental, physical, and emotional influences and utilization of indoor plants in association with allergic diseases will be needed.

Analysis of $CO_2$ and Harmful Gases Caused by Using Burn-type $CO_2$ Generators in Greenhouses (연소식 $CO_2$ 발생기 사용시 온실 내 $CO_2$ 및 유해가스 농도 분석)

  • Park, Jong-Seok;Shin, Jong-Wha;Ahn, Tae-In;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.177-183
    • /
    • 2010
  • Bum-type $CO_2$ generators are widely used in greenhouses for the purpose of $CO_2$ supply for photosynthesis and greenhouse heating. However harmful gases included in the air might give severe effects on the plant growth. For investigating the possible emission of harmful gases from commercial bum-type $CO_2$ generators, we carried out the analysis of the harmful by-products (NO, NOx, $NO_2$, CO, and VOCs) and $CO_2$ caused by using a bum-type $CO_2$ generator in greenhouses. And the harmful by-products from different type of fuels such as kerosene, LPG, and LNG were quantified. In order to minimize the uncertainties from a $CO_2$ generator, 4 different $CO_2$ generators were utilized in four plastic greenhouses and a glasshouse located at different places during the experimental works. The results showed that the concentration of NOx is proportional to $CO_2$ concentration. Levels of harmful gases in the most of greenhouses, where the new bum-type $CO_2$ generators were installed, were lower than 1.0 ppm when $CO_2$ concentration was set at 1,000 ppm. In case of LNG combustion, the concentration of CO reached out up to 300 ppm and pre-treatment for CO reduction, such as the adsorption process, would be inevitable to abate the adverse effects on plant growth.