• 제목/요약/키워드: VOCs(Volatile Organic Compounds)

검색결과 690건 처리시간 0.026초

시흥·안산 산단 및 영향지역의 휘발성유기화합물질(VOCs) 분포 특성 (Distribution Characteristics of Volatile Organic Compounds (VOCs) in an Industrial Complex and in Affected Areas in Siheung and Ansan)

  • 김동기;우정식;한현수;김용준;김웅수;홍순모;김종수;윤미혜
    • 한국환경보건학회지
    • /
    • 제46권3호
    • /
    • pp.256-266
    • /
    • 2020
  • Objectives: The concentrations and distribution characteristics of volatile organic compounds (VOCs) in an industrial complex and surrouding affected residential areas were investigated in an effort to support the efficient management of VOCs. Methods: The atmospheric concentrations of VOCs were analyzed at sites around the Sihwa-Banwol complex located in the cities of Siheung and Ansan and in the surrounding affected residential areas. The appearance of VOCs and the characteristics of their temporal and spatial distribution were evaluated. Results: The total VOC concentrations in the industrial complex were detected at 1.9-2.3 times higher than in the affected areas, but the daily VOCs distributions showed similar patterns in both sites. In particular, it was confirmed that the composition ratio of the VOCs and concentration fluctuations over time in the affected areas are similar to those in the adjacent industrial complex. VOC levels in the affected areas were higher than in residential areas in cities without an industrial complex. Conclusions: VOCs in residential areas near an industrial complex were highly distributed due to the influence of continuous pollutant emissions from the industrial complex. Therefore, the management of VOCs in the atmosphere of the affected area is important for identifying and managing the sources of VOCs detected in high concentrations in the industrial complex.

PC/Monitor 구성 전자부품에서 방출되는 휘발성 유기화합물의 분석 (Analysis of Volatile Organic Compounds Emitted from Electronic Parts in PC/Monitor Set)

  • 이창섭;최정우;백규원
    • 대한화학회지
    • /
    • 제44권4호
    • /
    • pp.343-349
    • /
    • 2000
  • PC/Monitor의 구성 전자부품으로부터 방출되는 휘발성 유기화합물(Volatile Organic Com-pounds,VOCs)를 분석하였다. Mpnitor를 구성하는 전자부품으로부터 연속으로 방출되는 VOCs의 경향을 시료챔버에 직접 연결되어있는 잔류가스 분석기(Residual Gas Analyzer,RG A)로 분석하였으며, 이들 전자부품에서 방출되는 VOCs의 성분을 RGA와 GC-MS로 분석하였다. 정성분석된 VOCs 중 소량으로 방출되거라도 불쾌한냄새와 건강상의 장해를 초래할 수 있는 toluene. xylene, cyclohexanone 및 benzofuran에 대하여 GC-MS로 정량분석하였다. 이러한 분석결과, 전자부품중 PCB(CEM-1)을제외하고 나머지 부품들은 가열시작 후 30분에서 1시간동안 toluene, xylene, cyclohexanone 및 phenol이 다량으로 연속 방출되는 경향을 나타내었으며, 거의 모든 전자부품에서 toluene, xylene, phenol, cyclohexanone 및 benzofuran 등의 물질들이측정시간 범위내에서 가장 빈번하게 방출되었다. 부품들 중 Trans가 가장 높은 VOCs의 방출농도를 보였으며, 전자부품으로부터 정량분석된 VOCs중에는 xylene의 방출농도가 550~2482 ${\mu}g/m^2$로 가장 크게 나타났다.

  • PDF

Screening of Volatile Organic Compound-Producing Yeasts and Yeast-Like Fungi against Aflatoxigenic Aspergillus flavus

  • Nasanit, Rujikan;Jaibangyang, Sopin;Onwibunsiri, Tikamporn;Khunnamwong, Pannida
    • 한국미생물·생명공학회지
    • /
    • 제50권2호
    • /
    • pp.202-210
    • /
    • 2022
  • Aflatoxin contamination in rice has been documented in a number of studies, and has a high incidence in Asian countries, and as such, there has been a growing interest in alternative biocontrol strategies to address this issue. In this study, 147 strains of yeasts and yeast-like fungi were screened for their potential to produce volatile organic compounds (VOCs) active against Aspergillus flavus strains that produce aflatoxin B1 (AFB1). Five strains within four different genera showed greater than 50% growth inhibition of some strains of A. flavus. These were Anthracocystis sp. DMKU-PAL124, Aureobasidium sp. DMKU-PAL120, Aureobasidium sp. DMKU-PAL144, Rhodotorula sp. DMKU-PAL99, and Solicococcus keelungensis DMKU-PAL84. VOCs produced by these microorganisms ranged from 4 to 14 compounds and included alcohols, alkenes, aromatics, esters and furans. The major VOCs produced by the closely related Aureobasidium strains were found to bedistinct. Moreover, 2-phenylethanol was the most abundant compound generated by Aureobasidium sp. DMKU-PAL120, while methyl benzeneacetate was the major compound emitted from Aureobasidium sp. DMKU-PAL144. On the other hand, 2-methyl-1-butanol and 3-methyl-1-butanol were significant compounds produced by the other three genera. These antagonists apparently inhibited A. flavus sporulation and mycelial development. Additionally, the reduction of the AFB1 in the fungal-contaminated rice grains was observed after co-incubation with these VOC-producing strains and ranged from 37.7 ± 8.3% to 60.3 ± 3.4%. Our findings suggest that these same microorganisms are promising biological control agents for use against aflatoxin-producing fungi in rice and other agricultural products.

실내외 공기중 휘발성 유기화학물질(VOCs)의 농도조사에 관한 연구 (Measurements of Indoor and Outdoor Volatile Organic Compounds(VOCs) Concentrations in Ambient Air)

  • 신혜수;김윤신;허귀석
    • 한국대기환경학회지
    • /
    • 제9권4호
    • /
    • pp.310-319
    • /
    • 1993
  • A pilot study was conducted in order to investigate the concentrations of indoor and outdoor VOCs (Volatile Organic Compounds) at ten homes and four building offices in Seoul during March-April, 1993. The five components of VOCs(Benzene, Toluene, Ethylbenzene, o-Xylene, m/p-Xylene) were collected using charcoal tube and were analysed using Gas Chromatography(GC) with a Flame Ionization Detector(FID). The mean concentations of indoor VOCs were shown as Benzene of 38.9 .mu.g/m$^{3}$. Toluene of 165.0 .mu.g/m$^{3}$, Ethylbenzene of 21.7 .mu.g/m$^{3}$, o-Xylene of 11.6 .mu.g/m$^{3}$ and m/p-Xylene of 29.3 .mu.g/m$^{3}$, but those corresponding that indoor levels of VOCs were higher than corresponding outdoor levels. The ratio of indoor and outdoor VOCs were higher than corresponding outdoor levels. The ratio of indoor and outdoor VOCs concentrations was 0.99 for Benzene, 1.23 for Toluene, 5.86 for Ethylbenzene, 5.23 for o-Xylene, 2.41 for m/p-Xylene in homes, while 2.02 for Benzene, 1.15 for Toulene, 0.96 for Ethylbenzene, 1.41 for o-Xylene, 1.38 for m/p-Xylene in offices, respectively. The mean concentrations of VOCs in homes were higher than those levels in offices, while the mean concentration of VOCs during active hour of occupants in a day were higher 1-3 times than the levels during non-active hour. Comparing VOCs levels by building's age, the mean concentrations of Benzene, o-Xylene and m/p-Xylene were higher in new building than old building, but the mean concentrations of Toluene and Etylbenzene in new building were lower than old building. The mean concentrations in all components of VOCs in smoking area were higher than non-smoking area. These results suggested that the VOC levels were affected by various indoor characteristics and behavioral activity of occupants.

  • PDF

휘발성 유기화합물(VOCs) 제거를 위한 저온금속촉매 실용화에 관한 연구 (Practical Usage of Low-Temperature Metal Catalyst for the Destruction of Volatile Organic Compounds (VOCs))

  • 정성철;이승환
    • 대한환경공학회지
    • /
    • 제34권6호
    • /
    • pp.397-405
    • /
    • 2012
  • 본 연구는 휴대폰을 비롯한 전자제품 세척공정과 악취유발물질 등에서 배출되는 휘발성 유기화합물(VOCs)을 경제적이고 안전하게 제거하는 기술에 대한 성능평가를 위해 수행되었다. 대부분의 산업공정에서는 VOCs 제거를 위해 활성탄 흡착탑을 가장 많이 사용하고 있으나 제거효율이 낮아 악취배출시설의 허용기준을 만족할 수 없고, 고농도 유기용제 유입 시 화재위험이 있다. 지금까지 연구되어진 금속산화물 촉매는 VOCs 제거효율이 최소 $220^{\circ}C$ 근방에서 50% 이하였다. 본 연구에서는 이 보다 훨씬 낮은 온도인 $100^{\circ}C$ 이하에서 촉매산화가 시작되었고, 약 $160^{\circ}C$ 근방에서 VOCs가 95% 제거됨을 확인할 수 있었다. 적정처리가 가능한 범위는 공간속도가 $6,000hr^{-1}$ 이하일 때 최적의 제거효율을 나타내며, VOCs 유입농도가 200 ppm에서 4,000 ppm 사이, 촉매제어 온도가 $150{\sim}200^{\circ}C$에서 90~99%로 높은 제거효율을 보였고, VOCs 유입농도가 1,000 ppm 이상일 경우에는 자체반응열로 인해 외부열원이 필요 없었다. 본 저온촉매를 적용할 경우 LNG 와 LPG를 연료원으로 사용하는 RTO/RCO방식 대비 설치비는 50%, 연료비는 75% 감소되어 경제성이 높고 온실가스 발생량도 줄일 수 있었다. 그리고 황화합물과 산성가스에 대해서는 피독이 있는 것으로 확인되었다.

목재용 마감도료의 휘발성유기화합물 방출특성 (VOCs Emission Characteristics of Coating Materials for Wood Finishing)

  • 박상범;이민;이상민;강영석
    • 한국가구학회지
    • /
    • 제26권1호
    • /
    • pp.22-30
    • /
    • 2015
  • In order to prevent decay, distortion, bending, twist on wood products such as wooden furnitures, variety of coating materials were developed and used so far. The coating materials for wood finishing can be synthesized by natural resource or petroleum. However, these coating materials can cause contamination of indoor air quality due to emission of volatile organic compounds (VOCs). In this study, commercialized coating materials for wood finishing such as varnish, coat, and stain were evaluated on emission characteristics of VOCs. Among the varnish, eco-friendly products had about 15~46% lower TVOC emission ($1,042{\mu}g/m^2h{\sim}3,257{\mu}g/m^2h$, respectively, than typical product ($7,100{\mu}g/m^2h$). Natural resource based coating material showed lowest TVOC emission level. However, one of natural resource based waterborne stain showed higher TVOC emission level because waterborne stain already contained higher amount of natural VOC. Oil-based stain might not be suitable for indoor use on interior wall and furniture due to exceed amount of TVOC. Based on results, natural resource based coat or waterborne stain are recommenced to use on wood products.

초임계 이산화탄소로 처리된 풀빅산 함유 용액의 물리적 특성 개선 효과 (The Effect of Supercritical Carbon Dioxide Treatment on Physical Properties Improvement of Fulvic Acid)

  • 이주희;박정남;전병수
    • KSBB Journal
    • /
    • 제26권6호
    • /
    • pp.523-528
    • /
    • 2011
  • The objective of this study was to reduce negative elements such as volatile organic compounds (VOCs) from fulvic acid using supercritical carbon dioxide ($SCO_2$) and to measure concentration and chromaticity of fulvic acid before and after treatment of $SCO_2$. Fulvic acid was treated at different experimental conditions; pressures of 100, 120 and 150 bar at $40^{\circ}C$ for 2 h. The composition of VOCs from fulvic acid was evaluated by GC-MS analysis, and the concentration was quantitatively analyzed using UV-spectrometer from fulvic acid at different experimental conditions. Also, the chromaticity of fulvic acid was evaluated using spectrophotometer. Though concentration and chromaticity of fulvic acid were not nearly changed, the VOCs from fulvic acid was remarkably decreased at 150 bar, $40^{\circ}C$ and 2 h. Reduction of VOCs through the $SCO_2$ is expected to contribute to quality improvement of fulvic acid.

Identification of Immune Responsive Genes on Benzene, Toluene and o-Xylene in Jurkat Cells Using 35 k Human Oligomicroarray

  • Sarma, Sailendra Nath;Kim, Youn-Jung;Jeon, Hee-Kyung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • 제2권4호
    • /
    • pp.229-235
    • /
    • 2006
  • Volatile organic compounds (VOCs) are a major component of urban air pollution. It is documented that low exposure levels of VOCs induce alterations in immune reactivity resulting in a subsequent higher risk for the development of allergic reactivity and asthma. Despite these facts, there are few reports on the affected primary target and the underlying effective causal mechanisms. So in this study, to better understand the risk of BTX (benzene, toluene and o-xylene) which are the major VOCs and to identify novel biomarkers on immune response to these VOCs exposure in human T lymphocytes, we performed the toxicogenomic study by analyzing of gene expression profiles using 35 k human oligo-microarray. BTX generated specific gene expression patterns in Jurkat cell line. By clustering analysis, we identified some genes as potential markers on immuno-modulating effects of BTX. Four genes of these, HLA-DOA, ITGB2, HMGA2 and 5TAT4 were the most significantly affected by BTX exposure. Thus, this study suggests that these differentially expressed immune genes may play an important role in the pathogenesis on BTX exposure and have significant potential as novel biomarkers of exposure, susceptibility and response to BTC.

휘발성유기화합물가스에 대한 폴리아닐린 센서의 감도 향상 (Sensitivity Enhancement of Polyaniline Sensor to Volatile Organic Compounds)

  • 유준부;유비;임정옥;변형기;허증수
    • 한국재료학회지
    • /
    • 제17권8호
    • /
    • pp.433-436
    • /
    • 2007
  • Nano-structured polyaniline have been synthesized by interfacial polymerization method at room temperature. An aqueous solution of aniline in chloroform and another solution of ammonium peroxydisulfate in doping acid were prepared at different times terminated with methanol at room temperature. SEM, UV-vis were used to characterize the polyaniline with regard to their morphology and structure. The diameter and length of polyaniline can be controlled by the reaction time. Nano-structured polyaniline were found to have superior sensitivity for volatile organic compounds(VOCs). As the reaction time to increase from 30minute to 2hours the sensitivity were decreased to VOCs vapors. The sensitivity of Nano-structured polyaniline sensor appeared to VOCs better than the sensitivity of chemical synthesis sensors. The sensitivity of Nano-structured polyaniline sensor improved benzene vapors.

바닥재의 확산계수 및 분배계수 산정 (The Determination of Diffusion and Partition Coefficients of Indoor Bottom Finishing Materials)

  • 박진수;;김신도;윤중섭
    • 한국환경보건학회지
    • /
    • 제34권3호
    • /
    • pp.219-225
    • /
    • 2008
  • Many building materials may contain high concentrations of volatile organic compounds (VOCs) and other hazardous pollutants(HAPs). Specifically, VOCs discharged by indoor building material may cause "new house" syndrome, atopic dermatitis etc. The diffusion coefficient and initially contained total VOC quantity were determined using microbalance experiments and small chamber tests. Interactions between volatile organic compounds (VOCs) and vinyl flooring (VF), a relatively homogenous, diffusion-controlled building material, were characterized. Rapid determination of the material/air partition coefficient (K) and the material-phase diffusion coefficient (D) for each VOC was achieved by placing thin VF slabs in a dynamic microbalance and subjecting them to controlled sorption/desorption cycles. K and D are shown to be independent of concentration for all of the VOCs and water vapor. This approach can be applied to other diffusion-controlled materials and should facilitate the prediction of their source/sink behavior using physically-based models.