• Title/Summary/Keyword: VOC detoxification

Search Result 2, Processing Time 0.019 seconds

Isolation of formaldehyde-responsive proteins in Arabidopsis (Formaldehyde에 반응하는 애기장대 단백질의 분리)

  • Kwon, Mi;Park, Hyun Jin;Seo, Jae Hyun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.52-60
    • /
    • 2007
  • Plant can detoxify the effect of the volatile organic compounds (VOC) such as formaldehyde and toluene, however, mechanisms of VOC detoxification are largely unknown in plant system. This study was performed to investigate phenotypic changes of Arabidopsis seedlings upon treatment of either formalin or toluene. Formalin treatment up to twenty four hours didn't cause any significant phenotypic damages on the leaf surface of 27 DAG Arabidopsis seedlings. However, the protein profile of formalin-treated seedlings was significantly different from that of mock control. Using automated electrophoresis system, the molecular weight of each formaldehyde-responsive protein (FRP) was predicted and its formaldehyde-dependent expression was confirmed at transcription level by quantitative real-time RT-PCR analysis. Four FRPs isolated in this study are the novel proteins with unknown functions but highly homologous to the stress-related proteins.

BTXS Compounds Biodegradability by Pseudomonas sp. Isolated from a Bioreactor (미생물반응기에서 분리한 Pseudomonas 속 세균의 BTXS Compounds 분해 특성)

  • Cho, Young-Cheol;Jang, Hyun-Sup;Hwang, Sun-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.678-683
    • /
    • 2007
  • We isolated a toluene-degrading bacterium, TDB-4, from a bioreactor which designed to remove volatile organic compounds (VOCs) from the contaminated air. Based on the results of 16S rRNA gene analysis, it was classified as Pseudomonas sp. The toluene degradability was estimated in the variable toluene and bacterial concentrations. The bacterial growth and degradation rate was higher in the samples supplied with 50 ${\mu}mole/vial$ of toluene than with 10 ${\mu}mole/vial$. It was decreased, however, in the samples with 100 ${\mu}mole/vial$, indicating that toluene inhibit the growth or degradation activity of TDB-4 at high concentration. When the degradation ability of other compounds was examined, TDB-4 can degrade other VOCs such as styrene, benzene, and xylene. These results will be helpful to optimize the operating conditions to improve the efficiency of a bioreactor in detoxification of VOCs.