• Title/Summary/Keyword: VIV

Search Result 131, Processing Time 0.022 seconds

Energy harvesting characteristics on curvature based PVDF cantilever energy harvester due to vortex induced vibration (곡면을 가진 외팔보형 PVDF 에너지 하베스터의 와류유기진동으로 인한 에너지 수확 특성)

  • Woo-Jin Song;Jongkil Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.168-177
    • /
    • 2024
  • When designing an underwater Piezoelectric Energy Harvester (PEH), Vortex Induced Vibration (VIV) is generated throughout the cantilever through a change in curvature, and the generation of VIV increases the vibration displacement of the curved cantilever PEH, which is an important factor in increasing actual power. The material of the curved PEH selected a Polyvinyline Di-Floride (PVDF) piezoelectric film, and the flow velocity is set at 0.1 m/s to 0.50 m/s for 50 mm, 130 mm, and 210 mm with various curvatures. The strain energy change of PEH by VIV was observed. The smaller the radius of curvature, the larger the VIV, and as the flow rate increased, more VIV appeared. Rapid shape transformation due to the small curvature was effective in generating VIV, and strain energy, normalized voltage, average power, etc. To increase the amount of power of the PEH, it is considered that the average power will increase as the number of curved PEHs increases as well as the steep curvature is improved.

Use of Discrete Vortex Method for VIV Response Analysis (VIV 해석을 위한 이산 보오텍스방법의 이용)

  • Kim, Yoo-Chul;Rheem, Chang-Kyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.3
    • /
    • pp.249-258
    • /
    • 2009
  • DVM (Discrete Vortex Method) is a numerical scheme that handles discrete vortex particles to express continuous vorticity field. This scheme is proper to VIV (Vortex Induced Vibration) analysis because there is no need to generate field grids and VIV is caused by separated vorticity from the body. When DVM is applied to VIV analysis, there are some applicable schemes such as using vortex blobs, integral method for computing induced velocity, etc. In this study, the influences of these schemes are investigated and the practical scheme that is appropriate for VIV analysis is proposed.

Evaluation on bridge dynamic properties and VIV performance based on wind tunnel test and field measurement

  • Yang, Yongxin;Ma, Tingting;Ge, Yaojun
    • Wind and Structures
    • /
    • v.20 no.6
    • /
    • pp.719-737
    • /
    • 2015
  • Full scale measurement on the structural dynamic characteristics and Vortex-induced Vibrations (VIV) of a long-span suspension bridge with a central span of 1650 m were conducted. Different Finite Element (FE) modeling principles for the separated twin-box girder were compared and evaluated with the field vibration test results, and the double-spine model was determined to be the best simulation model, but certain modification still needs to be made which will affect the basic modeling parameters and the dynamic response prediction values of corresponding wind tunnel tests. Based on the FE modal analysis results, small-scaled and large-scaled sectional model tests were both carried out to investigate the VIV responses, and probable Reynolds Number effects or scale effect on VIV responses were presented. Based on the observed VIV modes in the field measurement, the VIV results obtained from sectional model tests were converted into those of the three-dimensional (3D) full-scale bridge and subsequently compared with field measurement results. It is indicated that the large-scaled sectional model test can probably provide a reasonable and effective prediction on VIV response.

Numerical simulation in time domain to study cross-flow VIV of catenary riser subject to vessel motion-induced oscillatory current

  • Liu, Kun;Wang, Kunpeng;Wang, Yihui;Li, Yulong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.491-500
    • /
    • 2020
  • The present study proposes a time domain model for the Vortex-induced Vibration (VIV) simulation of a catenary riser under the combination of the current and oscillatory flow induced by vessel motion. In this model, the hydrodynamic force of VIV comprises excitation force, hydrodynamic damping and added mass, which are taken as functions of the non-dimensional frequency and amplitude ratio. The non-dimensional frequency is related with the response frequency, natural frequency, lock-in range and the fluid velocity. The relatively oscillatory flow induced by vessel motion is taken into account in the fluid velocity. Considering that the added mass coefficient and the non-dimensional frequency can affect each other, an iterative analysis is conducted at each time step to update the added mass coefficient and the natural frequency. This model is in detail validated against the published test models. The results show that the model can reasonably reflect the effect of the added mass coefficient on the VIV, and can well predict the riser's VIV under stationary and oscillatory flow induced by vessel motion. Based on the model, this study carries out the VIV simulation of a catenary riser with harmonic vessel motion. By analyzing the bending moment near the touchdown point, it is found that under the combination of the ocean current and oscillatory flow the vessel motion may decrease the VIV response, while increase the excited frequencies. In addition, the decreasing rate of the VIV under vessel surge is larger than that under vessel heave at small vessel motion velocity, while the situation becomes opposite at large vessel motion velocity.

Sensitivity study for important parameters of VIV fatigue evaluation of SCR

  • Lee, Sung-Je;Kang, Chanhoe;Jang, Changhwan;Park, Sung-Gun
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.2
    • /
    • pp.66-74
    • /
    • 2017
  • Since risers have to be operated without being replaced during the design life time after installation, fatigue evaluation as well as strength analysis should be performed. The fatigue life of the riser is known to be dominantly influenced by wave loading and vortex induced vibration (VIV) phenomena. The fatigue life evaluation method and the behavior characteristics of the riser by the wave have been done a lot. Even though the VIV is an important source of fatigue damage for SCR, the evaluation method and behavior characteristics by VIV have not been studied relatively. Most of the S / W for calculating VIV fatigue are a semi-empirical model based on various theoretical models and experiments. For better understanding of VIV response, it is necessary to investigate the effect of parameters which affects the analysis result. This paper summarizes the results of parametric study performed to enhance the understanding of relationship between each parameter and fatigue analysis result.

Numerical investigation on VIV suppression of marine riser with triangle groove strips attached on its surface

  • Wang, Wei;Song, Baowei;Mao, Zhaoyong;Tian, Wenlong;Zhang, Tingying
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.875-882
    • /
    • 2019
  • The effects of Triangle Groove Strips (TGS) on Vortex-induced Vibration (VIV) suppression of marine riser are numerically investigated using Computational Fluid Dynamics (CFD) method. The range of Reynolds number in simulations is 4.0 × 104 < Re < 1.2 × 105. The two-dimensional unsteady Reynolds-Averaged Navier-Stokes (RANS) equations and Shear Stress Transport (SST) k-ω turbulence model are used to calculate the flow around marine riser. The Newmark-β method is employed for evaluating the structure dynamics of marine riser. The effect of the height ratio (ε) of TGS on VIV suppression is evaluated. The amplitude responses, frequency responses, vortex patterns and the flow around the structures are discussed in detail. With the increase of the height ratio of TGS, the suppression effect of TGS on VIV suppression is improved firstly and then weakened. When ε=0.04, the suppression effect of TGS is the best. Compared with the VIV responses of smooth marine riser, the amplitude ratio is reduced by 38.9%, the peak of the lift coefficient is reduced by 69% and the peak of the drag coefficient is reduced by 40% when Re=6.0 × 104. With the increase of Reynolds number, the suppression effect of TGS on VIV suppression is improved firstly and then weakened. When the Reynolds number is 7.0 × 104, the amplitude ratio can be reduced by 40.1%. As to the large-amplitude vibration cases, the TGS show nice suppression effect on VIV.

Coupling effects of vortex-induced vibration for a square cylinder at various angles of attack

  • Zheng, Deqian;Ma, Wenyong;Zhang, Xiaobin;Chen, Wei;Wu, Junhao
    • Wind and Structures
    • /
    • v.34 no.5
    • /
    • pp.437-450
    • /
    • 2022
  • Vortex-induced vibration (VIV) is a significant concern when designing slender structures with square cross sections. VIV strongly depends on structural dynamics and flow states, which depend on the conditions of the approaching flow and shape of a structure. Therefore, the effects of the angle of attack on the coupling effects of VIV for a square cylinder are expected to be significant in practice. In this study, the aerodynamic forces for a fixed and elastically mounted square cylinder were measured using wind pressure tests. Aerodynamic forces on the stationary cylinder are firstly discussed by comparisons of variation of statistical aerodynamic force and wind pressure coefficient with wind angle of attack. The coupling effect between the aerodynamic forces and the motion of the oscillating square cylinder by VIV is subsequently investigated in detail at typical wind angels of attack with occurrence of three typical flow regimes, i.e., leading-edge separation, separation bubble (reattachment), and attached flow. The coupling effect are illustrated by discussing the onset of VIV, characteristics of aerodynamic forces during VIV, and interaction between motion and aerodynamic forces. The results demonstrate that flow states can be classified based on final separation points or the occurrence of reattachment. These states significantly influence coupling effects of the oscillating cylinder. Vibration enhances vortex shedding, which creates strong fluctuations in aerodynamic forces. However, differences in the lock-in range, aerodynamic force, and interaction process for angles of attack smaller and larger than the critical angle of attack revealed noteworthy characteristics in the VIV of a square cylinder.

ML-based prediction method for estimating vortex-induced vibration amplitude of steel tubes in tubular transmission towers

  • Jiahong Li;Tao Wang;Zhengliang Li
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.27-40
    • /
    • 2024
  • The prediction of VIV amplitude is essential for the design and fatigue life estimation of steel tubes in tubular transmission towers. Limited to costly and time-consuming traditional experimental and computational fluid dynamics (CFD) methods, a machine learning (ML)-based method is proposed to efficiently predict the VIV amplitude of steel tubes in transmission towers. Firstly, by introducing the first-order mode shape to the two-dimensional CFD method, a simplified response analysis method (SRAM) is presented to calculate the VIV amplitude of steel tubes in transmission towers, which enables to build a dataset for training ML models. Then, by taking mass ratio M*, damping ratio ξ, and reduced velocity U* as the input variables, a Kriging-based prediction method (KPM) is further proposed to estimate the VIV amplitude of steel tubes in transmission towers by combining the SRAM with the Kriging-based ML model. Finally, the feasibility and effectiveness of the proposed methods are demonstrated by using three full-scale steel tubes with C-shaped, Cross-shaped, and Flange-plate joints, respectively. The results show that the SRAM can reasonably calculate the VIV amplitude, in which the relative errors of VIV maximum amplitude in three examples are less than 6%. Meanwhile, the KPM can well predict the VIV amplitude of steel tubes in transmission towers within the studied range of M*, ξ and U*. Particularly, the KPM presents an excellent capability in estimating the VIV maximum amplitude by using the reduced damping parameter SG.

사료에서 고기까지 (Feed to Meat), 식품의 안전과 가축의 위생수준 높인다

  • 대한양계협회
    • KOREAN POULTRY JOURNAL
    • /
    • v.37 no.1 s.423
    • /
    • pp.113-117
    • /
    • 2005
  • 본기자는 지난 12월 7일부터 12월 9일까지 태국 방콕에서 한국, 영국, 중국, 일본, 네덜란드, 말레이시아, 인도, 홍콩, 베트남 인도네시아 등 14개국과 태국 현지 기자 등 총 60여명이 참여한 세계 저널리스트 프로그램에 참석하였다. 이번 저널리스트 프로그램은 세계의 VIV 박람회를 주최하는 VNU 및 태국의 VIV ASIA를 주최하는 NEO(N.C.C. Exhibition Organizer Co., Ltd.)와 국제 무역전시센터 BITEC(Bangkok International Trade and Exhibition Centre)이 VIV ASIA 2005를 홍보하고, 태국의 축산업을 알리기 위한 것으로 VIV ASIA 2005 박람회가 개최될 BITEC 소개, 기자들과 전시업체의 만남, 식품가공업체(CP Group) 견학, 사료공장 및 농장방문 등 다채롭게 진행되었다. 이번 호에는 VIV ASIA 2005이 개최될 BITEC과 참가 전시업체와 저널리스트의 만남에 대하여 정리하였다.

  • PDF