• Title/Summary/Keyword: VIDEO ENCODER

Search Result 447, Processing Time 0.024 seconds

SHVC-based Texture Map Coding for Scalable Dynamic Mesh Compression (스케일러블 동적 메쉬 압축을 위한 SHVC 기반 텍스처 맵 부호화 방법)

  • Naseong Kwon;Joohyung Byeon;Hansol Choi;Donggyu Sim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.3
    • /
    • pp.314-328
    • /
    • 2023
  • In this paper, we propose a texture map compression method based on the hierarchical coding method of SHVC to support the scalability function of dynamic mesh compression. The proposed method effectively eliminates the redundancy of multiple-resolution texture maps by downsampling a high-resolution texture map to generate multiple-resolution texture maps and encoding them with SHVC. The dynamic mesh decoder supports the scalability of mesh data by decoding a texture map having an appropriate resolution according to receiver performance and network environment. To evaluate the performance of the proposed method, the proposed method is applied to V-DMC (Video-based Dynamic Mesh Coding) reference software, TMMv1.0, and the performance of the scalable encoder/decoder proposed in this paper and TMMv1.0-based simulcast method is compared. As a result of experiments, the proposed method effectively improves in performance the average of -7.7% and -5.7% in terms of point cloud-based BD-rate (Luma PSNR) in AI and LD conditions compared to the simulcast method, confirming that it is possible to effectively support the texture map scalability of dynamic mesh data through the proposed method.

Development of ATSC3.0 based UHDTV Broadcasting System providing Ultra-high-quality Service that supports HDR/WCG Video and 3D Audio, and a Fixed UHD/Mobile HD Service (HDR/WCG 비디오와 3D 오디오를 지원하는 초고품질 방송서비스와 고정 UHD/이동 HD 방송 서비스를 제공하는 ATSC 3.0 기반 UHDTV 방송 시스템 개발)

  • Ki, Myungseok;Seok, Jinwuk;Beack, Seungkwon;Jang, Daeyoung;Lee, Taejin;Kim, Hui Yong;Oh, Hyeju;Lim, Bo-mi;Bae, Byungjun;Kim, Heung Mook;Choi, Jin Soo
    • Journal of Broadcast Engineering
    • /
    • v.22 no.6
    • /
    • pp.829-849
    • /
    • 2017
  • Due to the large-scale TV display, the convergence of broadcasting and broadband, and the advancement of signal compression and transmission technology, terrestrial digital broadcasting has evolved into UHD broadcasting capable of providing simultaneous broadcasting of fixed UHD and mobile HD. The Korean standard for terrestrial UHDTV broadcasting is based on ATSC 3.0, the broadcasting standard of North America. The terrestrial UHDTV broadcasting standard chose that as a new AV codec standard, HEVC video codec which can compress with higher efficiency compared to AVC, and MPEG-H 3D audio codec for realistic audio. Also, DASH and MMT are adopted as transmission format instead of MPEG-2 TS to support broadband as well as broadcasting network, and in order to provide 4K UHD/mobile HD service simultaneously ROUTE multiplexing technology is applied. In this paper, we propose an audio/video encoder, which is required to provide HDR/WCG supported high quality video service, 10.2 channel/4 object supporting stereo sound service, fixed UHD and mobile HD simultaneous broadcasting service based on ATSC3.0, also we implemented the ATSC 3.0 LDM system for ROUTE/DASH packager, multiplexing system and physical layer transmission/reception, and verified the service ability by applying it to real time broadcast environment.

Dual Codec Based Joint Bit Rate Control Scheme for Terrestrial Stereoscopic 3DTV Broadcast (지상파 스테레오스코픽 3DTV 방송을 위한 이종 부호화기 기반 합동 비트율 제어 연구)

  • Chang, Yong-Jun;Kim, Mun-Churl
    • Journal of Broadcast Engineering
    • /
    • v.16 no.2
    • /
    • pp.216-225
    • /
    • 2011
  • Following the proliferation of three-dimensional video contents and displays, many terrestrial broadcasting companies have been preparing for stereoscopic 3DTV service. In terrestrial stereoscopic broadcast, it is a difficult task to code and transmit two video sequences while sustaining as high quality as 2DTV broadcast due to the limited bandwidth defined by the existing digital TV standards such as ATSC. Thus, a terrestrial 3DTV broadcasting with a heterogeneous video codec system, where the left image and right images are based on MPEG-2 and H.264/AVC, respectively, is considered in order to achieve both high quality broadcasting service and compatibility for the existing 2DTV viewers. Without significant change in the current terrestrial broadcasting systems, we propose a joint rate control scheme for stereoscopic 3DTV service based on the heterogeneous dual codec systems. The proposed joint rate control scheme applies to the MPEG-2 encoder a quadratic rate-quantization model which is adopted in the H.264/AVC. Then the controller is designed for the sum of the left and right bitstreams to meet the bandwidth requirement of broadcasting standards while the sum of image distortions is minimized by adjusting quantization parameter obtained from the proposed optimization scheme. Besides, we consider a condition on maintaining quality difference between the left and right images around a desired level in the optimization in order to mitigate negative effects on human visual system. Experimental results demonstrate that the proposed bit rate control scheme outperforms the rate control method where each video coding standard uses its own bit rate control algorithm independently in terms of the increase in PSNR by 2.02%, the decrease in the average absolute quality difference by 77.6% and the reduction in the variance of the quality difference by 74.38%.

Improved AR-FGS Coding Scheme for Scalable Video Coding (확장형 비디오 부호화(SVC)의 AR-FGS 기법에 대한 부호화 성능 개선 기법)

  • Seo, Kwang-Deok;Jung, Soon-Heung;Kim, Jin-Soo;Kim, Jae-Gon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1173-1183
    • /
    • 2006
  • In this paper, we propose an efficient method for improving visual quality of AR-FGS (Adaptive Reference FGS) which is adopted as a key scheme for SVC (Scalable Video Coding) or H.264 scalable extension. The standard FGS (Fine Granularity Scalability) adopts AR-FGS that introduces temporal prediction into FGS layer by using a high quality reference signal which is constructed by the weighted average between the base layer reconstructed imageand enhancement reference to improve the coding efficiency in the FGS layer. However, when the enhancement stream is truncated at certain bitstream position in transmission, the rest of the data of the FGS layer will not be available at the FGS decoder. Thus the most noticeable problem of using the enhancement layer in prediction is the degraded visual quality caused by drifting because of the mismatch between the reference frame used by the FGS encoder and that by the decoder. To solve this problem, we exploit the principle of cyclical block coding that is used to encode quantized transform coefficients in a cyclical manner in the FGS layer. Encoding block coefficients in a cyclical manner places 'higher-value' bits earlier in the bitstream. The quantized transform coefficients included in the ealry coding cycle of cyclical block coding have higher probability to be correctly received and decoded than the others included in the later cycle of the cyclical block coding. Therefore, we can minimize visual quality degradation caused by bitstream truncation by adjusting weighting factor to control the contribution of the bitstream produced in each coding cycle of cyclical block coding when constructing the enhancement layer reference frame. It is shown by simulations that the improved AR-FGS scheme outperforms the standard AR-FGS by about 1 dB in maximum in the reconstructed visual quality.

R-lambda Model based Rate Control for GOP Parallel Coding in A Real-Time HEVC Software Encoder (HEVC 실시간 소프트웨어 인코더에서 GOP 병렬 부호화를 지원하는 R-lambda 모델 기반의 율 제어 방법)

  • Kim, Dae-Eun;Chang, Yongjun;Kim, Munchurl;Lim, Woong;Kim, Hui Yong;Seok, Jin Wook
    • Journal of Broadcast Engineering
    • /
    • v.22 no.2
    • /
    • pp.193-206
    • /
    • 2017
  • In this paper, we propose a rate control method based on the $R-{\lambda}$ model that supports a parallel encoding structure in GOP levels or IDR period levels for 4K UHD input video in real-time. For this, a slice-level bit allocation method is proposed for parallel encoding instead of sequential encoding. When a rate control algorithm is applied in the GOP level or IDR period level parallelism, the information of how many bits are consumed cannot be shared among the frames belonging to a same frame level except the lowest frame level of the hierarchical B structure. Therefore, it is impossible to manage the bit budget with the existing bit allocation method. In order to solve this problem, we improve the bit allocation procedure of the conventional ones that allocate target bits sequentially according to the encoding order. That is, the proposed bit allocation strategy is to assign the target bits in GOPs first, then to distribute the assigned target bits from the lowest depth level to the highest depth level of the HEVC hierarchical B structure within each GOP. In addition, we proposed a processing method that is used to improve subjective image qualities by allocating the bits according to the coding complexities of the frames. Experimental results show that the proposed bit allocation method works well for frame-level parallel HEVC software encoders and it is confirmed that the performance of our rate controller can be improved with a more elaborate bit allocation strategy by using the preprocessing results.

A Design of Fractional Motion Estimation Engine with 4×4 Block Unit of Interpolator & SAD Tree for 8K UHD H.264/AVC Encoder (8K UHD(7680×4320) H.264/AVC 부호화기를 위한 4×4블럭단위 보간 필터 및 SAD트리 기반 부화소 움직임 추정 엔진 설계)

  • Lee, Kyung-Ho;Kong, Jin-Hyeung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.6
    • /
    • pp.145-155
    • /
    • 2013
  • In this paper, we proposed a $4{\times}4$ block parallel architecture of interpolation for high-performance H.264/AVC Fractional Motion Estimation in 8K UHD($7680{\times}4320$) video real time processing. To improve throughput, we design $4{\times}4$ block parallel interpolation. For supplying the $10{\times}10$ reference data for interpolation, we design 2D cache buffer which consists of the $10{\times}10$ memory arrays. We minimize redundant storage of the reference pixel by applying the Search Area Stripe Reuse scheme(SASR), and implement high-speed plane interpolator with 3-stage pipeline(Horizontal Vertical 1/2 interpolation, Diagonal 1/2 interpolation, 1/4 interpolation). The proposed architecture was simulated in 0.13um standard cell library. The gate count is 436.5Kgates. The proposed H.264/AVC Fractional Motion Estimation can support 8K UHD at 30 frames per second by running at 187MHz.

Spatial Correlation Based Fast Coding Depth Decision and Reference Frame Selection in HEVC (HEVC의 공간적 상관성 기반 고속 부호화 깊이 및 참조영상 결정 방법)

  • Lee, Sang-Yong;Kim, Dong-Hyun;Kim, Jae-Gon;Choi, Hae-Chul;Kim, Jin-Soo;Choi, Jin-Soo
    • Journal of Broadcast Engineering
    • /
    • v.17 no.5
    • /
    • pp.716-724
    • /
    • 2012
  • In this paper, we propose a fast decision method of maximum coding depth decision and reference frame selection in HEVC. To reduce computational complexity and encoding time of HEVC, two methods are proposed. In the first method, the maximum depth of each coding unit (CU) in a largest CU (LCU) is constrained by using the maximum coding depth used by adjacent LCUs based on the assumption that the spatial correlation is very high and rate-distortion (R-D) cost. And we constrain the number of reference pictures for prediction unit (PU) performing motion estimation by using the motion information of the upper depth PU. The proposed methods reduce computational complexity of the HEVC encoder by constraining the maximum coding depth and the reference frame. We could achieve about 39% computational complexity reduction with marginal bitrate increase of 1.2% in the comparison with HM6.1 HEVC reference software.

H.264/AVC Fast Macroblock Mode Decision Algorithm (H.264/AVC 고속 매크로블록 모드 결정 알고리즘)

  • Kim, Ji-Woong;Kim, Yong-Kwan
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.4 s.316
    • /
    • pp.8-16
    • /
    • 2007
  • For the improvement of coding efficiency, the H.264/AVC video coding standard employs new coding tools compared with existing coding standards. However, due to these new coding tools, the complexity of K264/AVC standard encoder is greatly increased. Specifically, the inter/intra mode decision method using RDO(rate-distortion optimization) technique is one of the most complex parts in H.264/AVC. In this paper, we focus on the complexity reduction in macroblock mode decision. In the proposed method, we reduce the complexity of the $4{\times}4$ mode decision process using $4{\times}4$ simple square filters, and using spatial block correlation method. Additionally, exploiting the best mode of sub_macroblock in $Inter8{\times}8$ mode, we proposed an algorithm to eliminate some intra modes in current macroblock mode decision process. In addition, we employed a method to raise the probability to select SKIP, $Intra16{\times}16$, and $Intra16{\times}16$ modes which usually show low complexity and low bitrate compared with other modes. From the simulation results, the proposed algorithm reduce the encoding time by maximum 83% of total, and reduce the bitrate of the overall sequences by $8{\sim}10%$ on the average compared with existing coding methods.

Fast Intra Prediction Mode Decision using Most Probable Mode for H.264/AVC (H.264/AVC에서의 최고 확률 모드를 이용한 고속 화면 내 예측 모드 결정)

  • Kim, Dae-Yeon;Kim, Jeong-Pil;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.15 no.3
    • /
    • pp.380-390
    • /
    • 2010
  • The most recent standard video codec, H.264/AVC achieves significant coding efficiency by using a rate-distortion optimization(RDO). The RDO is a measurement for selecting the best mode which minimizes the Lagrangian cost among several modes. As a result, the computational complexity is increased drastically in encoder. In this paper, a method for fast intra prediction mode decision is proposed to reduce the RDO complexity. To speed up Intra$4{\times}4$ and Chroma Intra encoding, the proposed method decides the case that MPM (Most Probable Mode) is the best prediction mode. In this case, the RDO process is skipped, and only MPM is used for encoding the block in Intra$4{\times}4$. And the proposed method is also applied to the chroma Intra prediction mode in a similar way to the Intra$4{\times}4$. The experimental results show that the proposed method achieves an average encoding time saving of about 63% with negligible loss of PSNR (Peak Signal-to-Noise Ratio).

Fast Intra-Mode Decision for H.264/AVC using Inverse Tree-Structure (H.264/AVC 표준에서 역트리 구조를 이용하여 고속으로 화면내 모드를 결정하는 방법)

  • Ko, Hyun-Suk;Yoo, Ki-Won;Seo, Jung-Dong;Sohn, Kwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.13 no.3
    • /
    • pp.310-318
    • /
    • 2008
  • The H.264/AVC standard achieves higher coding efficiency than previous video coding standards with the rate-distortion optimization (RDO) technique which selects the best coding mode and reference frame for each macroblock. As a result, the complexity of the encoder have been significantly increased. In this paper, a fast intra-mode decision algorithm is proposed to reduce the computational load of intra-mode search, which is based on the inverse tree-structure edge prediction algorithm. First, we obtained the dominant edge for each $4{\times}4$ block from local edge information, then the RDO process is only performed by the mode which corresponds to dominant edge direction. Then, for the $8{\times}8$ (or $16{\times}16$) block stage, the dominant edge is calculated from its four $4{\times}4$ (or $16{\times}16$) blocks' dominant edges without additional calculation and the RDO process is also performed by the mode which is related to dominant edge direction. Experimental results show that proposed scheme can significantly improve the speed of the intra prediction with a negligible loss in the peak signal to noise ratio (PSNR) and a little increase of bits.